Abstract

The ligases (or synthetases) form the least numerous of the six major classes of enzymes (cf. Table 8.1, p. 226). Accordingly, Table 7.1 at the end of the present chapter numbers only thirty enzymes; yet these amount to 33% of all the ligases recognized by the Enzyme Commission.

Keywords

Carboxyl Tryptophan Histidine Phenylalanine Biotin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. Spector, in Energy, Biosynthesis, and Regulation in Molecular Biology, D. Richter, ed., Walter de Gruyter, Berlin, 1974, pp. 564–574.Google Scholar
  2. (2).
    D. E. Koshland, Jr., JACS 74, 2286–2292 (1952).CrossRefGoogle Scholar
  3. (3).
    C. T. Walsh, J. G. Hildebrand, and L. B. Spector, JBC 245, 5699–5708 (1970).Google Scholar
  4. (4).
    L. Levintow and A. Meister, Fed. Proc. 15, 299 (1956).Google Scholar
  5. (5).
    P. Berg, JBC 222, 1015–1023 (1956).Google Scholar
  6. (6).
    H. S. Kingdon, L. T. Webster, Jr., and E. W. Davie, PNAS 44, 757–765 (1958).PubMedCrossRefGoogle Scholar
  7. (7).
    C. F. Midelfort, K. Chakraburtty, A. Steinschneider, and A. H. Mehler, JBC 250, 3866–3873 (1975).Google Scholar
  8. (8).
    D. V. Santi and R. W. Webster, Jr., JBC 250, 3874–3877 (1975).Google Scholar
  9. (9).
    M. Karasek, P. Castelfranco, P. P. Krishnaswamy, and A. Meister, JACS 80, 2335–2336 (1958)CrossRefGoogle Scholar
  10. P. V. Graves, J. de Bony, J. P. Mazat, and B. Labouesse, Biochimie 62,33–41 (1980).PubMedCrossRefGoogle Scholar
  11. (10).
    M. Dorizzi, B. Labouesse, and J. Labouesse, EJB 19, 563–572 (1971).PubMedCrossRefGoogle Scholar
  12. (11).
    A. Kraeveskii, L. L. Kisselev, and B. P. Gottikh, Mol. Bioi. 7,634–639 (1973) (Engl. transl.).Google Scholar
  13. (12).
    L. B. Spector, Bioorg. Chern. 2, 311–321 (1973).CrossRefGoogle Scholar
  14. (13).
    L. L. Kisselev and L. L. Kochkina, Dokl. Biochem. 214, 7–9 (1974) (Engl. transl.).Google Scholar
  15. (14).
    L. L. Kisselev and O. O. Favorova, Adv. Enzymol. 40, 141–238 (1974).PubMedGoogle Scholar
  16. L. L. Kisselev, O. O. Favorova, and G. K. Kovaleva, Methods Enzymol. 59, 234–257 (1979).PubMedCrossRefGoogle Scholar
  17. (15).
    G. K. Kovaleva, S. G. Moroz, O. O. Favorova, and L. L. Kisselev, FEBS lett. 95, 81–84 (1978)PubMedCrossRefGoogle Scholar
  18. L. L. Kisselev, O. O. Favorova, and G. K. Kovaleva, in Transfer RNA: Structure, Properties, and Recognition, P. R. Schimmel, D. Soh, and J. N. Abelson, eds., Cold Spring Harbor Laboratory, 1979, pp. 235–246.Google Scholar
  19. (17).
    P. Bartmann, T. Hanke, and E. Holler, JBC 250, 7668–7674 (1975).Google Scholar
  20. (18).
    P. Bartmann, T. Hanke, and E. Holler, B 14, 4777–4786 (1975)Google Scholar
  21. F. Fasolio and A. R. Fersht, EJB 85, 85–88 (1978).CrossRefGoogle Scholar
  22. (19).
    P. Remy and J. P. Ebel, FEBS lett. 61, 28–31 (1976).PubMedCrossRefGoogle Scholar
  23. (20).
    R. Thiebe, FEBS lett. 60, 342–345 (1975).PubMedCrossRefGoogle Scholar
  24. (21).
    W. Geyers, H. Kleinkauf, and F. Lipmann, PNAS 63, 1335–1342 (1969).CrossRefGoogle Scholar
  25. (22).
    R. Roskoski, Jr., W. Gevers, H. Kleinkauf, and F. Lipmann, B 9, 4839–4845 (1970).Google Scholar
  26. (23).
    A. Murayama, J. P. Raffin, P. Remy, and J. P. Ebel, FEBS lett. 53, 15–22 (1975)PubMedCrossRefGoogle Scholar
  27. M. Baltzinger and P. Remy, FEBS lett. 79, 117–120 (1977).PubMedCrossRefGoogle Scholar
  28. (24).
    J. J. Stenesh and T. Winnick, Biochem. J. 77, 575–581 (1960).PubMedGoogle Scholar
  29. (25).
    G. D. Kalyankar and A. Meister, JACS 81, 1515–1516 (1959).CrossRefGoogle Scholar
  30. (26).
    G. D. Kalyankar and A. Meister, JBS 234, 3210–3218 (1959).Google Scholar
  31. (27).
    P. Berg, JBC 222,991–1013 (1956)Google Scholar
  32. L. T. Webster and F. Campagnari, JBC 237,1050–1055 (1962)Google Scholar
  33. L. T. Webster, JBC 238, 4010–4015 (1963).Google Scholar
  34. (28).
    M. E. Jones and F. Lipmann, Methods Enzymol. 1, 585–591 (1955).CrossRefGoogle Scholar
  35. (29).
    H. Anke and L. B. Spector, Biochem. Biophys. Res. Commun. 67, 767–773 (1975)PubMedCrossRefGoogle Scholar
  36. (30).
    C. F. Midelfort and I. Sarton-Miller, JBC 253, 7127–7129 (1978)Google Scholar
  37. M.-D. Tsai, B 18, 1468–1472(1979)Google Scholar
  38. (31).
    G. Kreil and P. D. Boyer, Biochem. Biophys. Res. Commun. 16, 551–555 (1964).PubMedCrossRefGoogle Scholar
  39. (32).
    W. A. Bridger, W. A. Millen, and P. D. Boyer, B 7, 3608–3616 (1968).Google Scholar
  40. (33).
    J. S. Nishimura and A. Meister, B 4, 1457–1462 (1965).Google Scholar
  41. (34).
    J. G. Hildebrand and L. B. Spector, JBC 244, 2606–2613 (1969).Google Scholar
  42. (35).
    R. W. Benson, J. L. Robinson, and P. D. Boyer, B 8, 2496–2502 (1969).Google Scholar
  43. (36).
    P. H. Pearson and W. A. Bridger, JBC 250, 8524–8529 (1975).Google Scholar
  44. (37).
    D. G. Mikeladze, L. N. Matveeva, and S. E. Severin, Biokhimiya 43, 1144–1152 (1978) (Engl, transl.).Google Scholar
  45. (38).
    W. A. Bridger, Biochem. Biophys. Res. Commun. 42, 948–954 (1971).PubMedCrossRefGoogle Scholar
  46. (39).
    P. H. Pearson and W. A. Bridger, JBC 250, 4451–4455 (1975).Google Scholar
  47. (40).
    F. J. Moffet and W. A. Bridger, JBC 245, 2758–2762 (1970).Google Scholar
  48. (41).
    F. L. Grinnell and J. S. Nishimura, B 8, 562–568 (1969).Google Scholar
  49. (42).
    S.-Y. Huang and P. Parsons, Fed. Proc. 37, 1804 (1978)Google Scholar
  50. D. G. Philipp and P. Parsons, JBC 254, 10785–10790 (1979).Google Scholar
  51. (44).
    H. U. Gaily, A. K. Spencer, I. M. Armitage, J. H. Prestegard, and J. E. Cronan, Jr., B 17, 5377–5382 (1978)Google Scholar
  52. (45).
    M. C. Scrutton, D. B. Keech, and M. F. Utter, JBC 240, 574–581 (1965).Google Scholar
  53. (46).
    W. R. McClure, H. A. Lardy, and W. W. Cleland, JBC 246, 3584–3590 (1971).Google Scholar
  54. (47).
    L. K. Ashman and D. B. Keech, JBC 250, 14–21 (1975).Google Scholar
  55. (48).
    R. E. Barden, C.-H. Fung, M. F. Utter, and M. C. Scrutton, JBC 247, 1323–1333 (1972).Google Scholar
  56. (49).
    W. R. McClure, H. A. Lardy, M. Wagner, and W. W. Cleland, JBC 246,3579–3583(1971).Google Scholar
  57. (50).
    S. B. Easterbrook-Smith, J. C. Wallace, and D. B. Keech, Biochem. J. 169,225–228 (1978)PubMedGoogle Scholar
  58. (51).
    M. C. Scrutton and M. F. Utter, JBC 240, 3714–3723 (1965).Google Scholar
  59. (52).
    I. R. Lehman, Science 186, 790–797 (1974)PubMedCrossRefGoogle Scholar
  60. (53).
    J. W. Little, S. B. Zimmerman, C. K. Oshinsky, and M. Gellert, PNAS 58, 2004–2011 (1967)PubMedCrossRefGoogle Scholar
  61. B. M. Olivera, Z. W. Hall, Y. Anraku, J. R. Chien, and I. R. Lehman, Cold Spring Harbor Symp. Quant. Biol. 33, 27–34 (1968).PubMedGoogle Scholar
  62. (54).
    P. Modrich, Y. Anraku, and I. R. Lehman, JBC 248, 7495–7501 (1973).Google Scholar
  63. (55).
    P. Modrich and I. R. Lehman, JBC 248, 7502–7511 (1973).Google Scholar
  64. (56).
    R. I. Gumport and I. R. Lehman, PNAS 68, 2559–2563 (1971).PubMedCrossRefGoogle Scholar
  65. (57).
    B. M. Olivera, Z. W. Hall, and I. R. Lehman, PNAS 61, 237–244 (1968).PubMedCrossRefGoogle Scholar
  66. (58).
    P. Modrich, I. R. Lehman, and J. C. Wang, JBC 247, 6370–6372 (1972)Google Scholar
  67. (63).
    S. Cha, C. M. Cha, and R. E. Parks, Jr., JBC 242, 2582–2592 (1967)Google Scholar
  68. D. P. Baccanari and S. Cha, Fed. Proc. 31,500(1971).Google Scholar
  69. (65).
    L. B. Hersh, JBC 249, 6264–6271 (1974)Google Scholar
  70. M. Elwell and L. B. Hersh, JBC 254, 2434–2438 (1979).Google Scholar
  71. (66).
    G. C. Webster and J. E. Varner, Arch. Biochem. Biophys. 52,22–32 (1954)PubMedCrossRefGoogle Scholar
  72. D. H. Strumeyer and K. Bloch, JBC 235, PC27 (1960).Google Scholar
  73. J. S. Davis, J. B. Balinsky, J. S. Harington, and J. B. Shepherd, Biochem. J. 133,667–678 (1973)PubMedGoogle Scholar
  74. R. Sekura and A. Meister, JBC 252,2606–2610 (1977).Google Scholar
  75. (67).
    J. E. Snoke and K. Bloch, JBC 213, 825–835 (1955)Google Scholar
  76. A. Wendel and L. Flohe, Z. Physiol. Chem. 353,523–530 (1972).CrossRefGoogle Scholar
  77. (69).
    G. F. Bryce and N. Brot, B 11, 1708–1715 (1972).Google Scholar
  78. (70).
    K. Akashi and K. Kurahashi, Biochem. Biophys. Res. Cornrnm. 77, 259–267 (1977).CrossRefGoogle Scholar
  79. (71).
    R. Roskoski, Jr., G. Ryan, H. Kleinkauf, W. Gevers, and F. Lipmann, Arch. Biochem. Biophys. 143, 485–492 (1971)PubMedCrossRefGoogle Scholar
  80. H. Kleinkauf, R. Roskoski, Jr., and F. Lipmann, PNAS 68, 2069–2072(1971).PubMedCrossRefGoogle Scholar
  81. (72).
    R. Roskoski, Jr., W. Gevers, H. Kleinkauf, and F. Lipmann, B 9, 4839–4845 (1970); R. Roskoski, Jr., H. Kleinkauf, W. Gevers, and F. Lipmann, B 9, 4846–4851 (1970); last citation in Ref. (71).Google Scholar
  82. (73).
    S. Komura and K. Kurahashi,. J Biochem. (Tokyo) 86,1013–1021 (1979); idem., J. Biochem, (Tokyo) 88, 285–288 (1980).Google Scholar
  83. (74).
    Ø. Frøyshov, EJB 59, 201–206 (1975).PubMedCrossRefGoogle Scholar
  84. (75).
    H. Zalkin and C. D. Truitt, JBC 252, 5431–5436 (1977).Google Scholar
  85. (76).
    A Levitski and D. E. Koshland, B 10, 3365–3371 (1971).Google Scholar
  86. (77).
    P. A. Whitney and T. Cooper, JBC 248, 325–330 (1973)Google Scholar
  87. P. A. Castric and B. Levenberg, BBA 438, 574–583 (1976).PubMedGoogle Scholar
  88. (78).
    B. H. Lee and S. C. Hartman, Biochem. Biophys. Res. Commun. 60, 918–925 (1974).PubMedCrossRefGoogle Scholar
  89. (79).
    K. Mizobuchi and J. M. Buchanan, JBC 243, 4853–4862 (1968)Google Scholar
  90. K. Mizobuchi, G. L. Kenyon, and J. M. Buchanan, JBC 243, 4863–4877 (1968)Google Scholar
  91. D. D. Schroeder, A. J. Allison, and J. M. Buchanan, JBC 244, 5856–5865 (1969)Google Scholar
  92. S. Y. Chu and J. F. Henderson, Can. J. Biochem. 50, 490–500 (1972)PubMedGoogle Scholar
  93. S. Ohnoki, B.-H. Hong, and J. M. Buchanan, B 16, 1065–1069 (1977).Google Scholar
  94. (80).
    B. Horowitz and A. Meister, JBC 247, 6708–6719 (1972).Google Scholar
  95. (81).
    V. P. Wellner, P. M. Anderson, and A. Meister, B 12, 2061–2066 (1973).Google Scholar
  96. (83).
    M. Waite and S. J. Wakil, JBC 238,77–80 (1963)Google Scholar
  97. S. Numa, E. Ringelmann, and F. Lynen, Biochem. Z. 340, 228–242 (1964).PubMedGoogle Scholar
  98. (84).
    Y. Kaziro and S. Ochoa, JBC 236, 3131–3136 (1961).Google Scholar
  99. (85).
    F. Lynen, J. Knappe, E. Lorch, G. Jütting, E. Ringelmann, and J. P. Lachance, Biochem. Z. 335,123–167 (1961)PubMedGoogle Scholar
  100. R. H. Hirnes, D. L. Young, E. Ringelmann, and F. Lynen, Biochem. Z. 337, 48–61 (1963)Google Scholar
  101. J. Knappe, B. Wenger, and U. Wiegand, Biochem Z. (1963)Google Scholar
  102. J. Knappe, Wenger, and U. Wiegand, Biochem. Z. 337, 232–246 (1963).PubMedGoogle Scholar
  103. (86).
    B. Weiss and C. C. Richardson, JBC 242,4270–4272 (1972)Google Scholar
  104. B. Weiss, A. Thompson, and C. Richardson, JBC 243,4556–4563 (1968)Google Scholar
  105. S. Söderhäll and T. Lindahl, JBC 248,672–675 (1973).Google Scholar
  106. S. Söderhäll, EJB 51,129–136 (1975).PubMedCrossRefGoogle Scholar
  107. (88).
    J. W. Cranston, R. Silber, V. G. Malathi, and J. Hurwitz, JBC 249, 7447–7456 (1974).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1982

Authors and Affiliations

  • Leonard B. Spector
    • 1
  1. 1.The Rockefeller UniversityNew YorkUSA

Personalised recommendations