Advertisement

H. S. M. Coxeter: Published Works

  • Chandler Davis
  • Branko Grünbaum
  • F. A. Sherk
Conference paper

Keywords

Abstract Group Regular Polytopes Inversive Plane Frieze Pattern Expository Article 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

A. Books or Chapters in Books

  1. 1.
    (with P. Du Val, H. T. Flather, and J. F. Petrie) The 59 Icosahedra, University of Toronto Studies (Math. Series, No. 6), 1938.Google Scholar
  2. 2.
    Polyhedra, in Rouse Ball’s Mathematical Recreations and Essays, London, 1939. MR 8, 440.Google Scholar
  3. 2a.
    Projective geometry, in The Tree of Mathematics (ed. Glenn James), Digest Press, Pacixma CA, 1957, 173–194.Google Scholar
  4. 3.
    Non-Euclidean Geometry (Mathematical Expositions, No. 2), Toronto, 1942. MR4, 50. (5th ed.) University of Toronto Press, 1965.Google Scholar
  5. 4.
    Regular Polytopes, London, 1948, New York, 1949. MR10, 261. (2nd ed.) Macmillan, New York, 1963. MR27, 1856. (3rd ed.), Dover, New York, 1973. MR51, 6554.Google Scholar
  6. 5.
    The Real Projective Plane, New York, 1949. MR10, 129. (2nd ed.) Camb. Univ. Press, 1955. MR16, 1143. Reele Projektive Geometrie der Ebene, (transl. of above), Oldenbourg, Munich, 1955. MR17, 183.Google Scholar
  7. 6.
    (with W. O. J. Moser) Generators and Relations for Discrete Groups, Springer-Verlag, Berlin, 1957. MR 19, 527. (2nd ed.) 1965. MR 30, 4818. (3rd ed.) 1972. MR 50, 4229.MATHGoogle Scholar
  8. 7.
    Introduction to Geometry, Wiley, New York, 1961. MR23 A1251. (2nd ed.) 1969. MR49, 11369. Unvergängliche Geometrie (translation of above) Birkhäuser, Basel, 1963. (Japanese translation) Charles E. Tuttle Co., Tokyo, 1965. (Russian translation), Nauka, Moscow, 1966. MR35, 3516. Wstep do Geometrii dawnej i nowej (Polish translation), Panstwowe Wydawnictwo Naukowe, Warsaw, 1967. (Spanish translation), Limusa-Wiley S.A., Mexico, 1971. (Hungarian translation), Mûszaki Könyvkiado, Budapest, 1973.Google Scholar
  9. 8.
    Projective Geometry, Blaisdell, New York, 1964. MR30, 2380. (2nd ed.) University of Toronto Press, 1973. MR49, 11377. Projektivna Geometrija (translation of above), Skolska knjiga, Zagreb, 1977.Google Scholar
  10. 9.
    The total length of the edges of a non-Euclidean polyhedron, in Studies in Mathematical Analysis and Related Topics (Essays in honour of George Pólya, ed. G. Szegö, C. Loewner et al.), Stanford Univ. Press, 1962, 62–69. MR 26, 2944.Google Scholar
  11. 10.
    Geometry, in T. L. Saaty’s Lectures on Modern Mathematics, Wiley, New York, 1965, 58–94. MR 31, 2647.Google Scholar
  12. 11.
    Solids, geometric, in Encyclopaedia Britannica.Google Scholar
  13. 12.
    Geometry, Non-Euclidean, in Encyclopaedia Britannica.Google Scholar
  14. 13.
    Non-Euclidean geometry, in Collier’s Merit Students’ Encyclopedia.Google Scholar
  15. 14.
    Reflected light signals, in B. Hoffman’s Perspectives in Geometry and Relativity, Indiana University Press, 1966, 58–70. MR 36, 2378.Google Scholar
  16. 15.
    (with S. L. Greitzer) Geometry Revisited, Random House, New York, 1967. Redécouvrons la Géométrie (translation of above), Dunod, Paris, 1971.MATHGoogle Scholar
  17. 16.
    Twelve Geometric Essays, Southern Illinois University Press, Carbondale, 1968. MR46, 9843.Google Scholar
  18. 16a.
    Non-Euclidean geometry, in The Mathematical Sciences, MIT Press, 1969, 52–59.Google Scholar
  19. 17.
    The mathematical implications of Escher’s prints, in The World of M. C. Escher (ed. J. L. Locher), Abrams, New York, 1971, 49–52.Google Scholar
  20. 18.
    Virus macromolecules and geodesic domes, in A Spectrum of Mathematics (ed. J. C. Butcher), Auckland and Oxford University Presses, 1971, 98–107. MR 56, 6547.Google Scholar
  21. 19.
    The inversive plane with four points on each circle, in Studies in Pure Mathematics (ed. L. Mirsky), Academic Press, London, 1971, 39–52. MR 43, 6814.MATHGoogle Scholar
  22. 20.
    Inversive geometry, in The Teaching of Geometry at the Pre-College Level, (ed. H. G. Steiner), Reidel, Dordrecht, 1971, 34–45.Google Scholar
  23. 21.
    Cayley diagrams and regular complex polygons, (in A Survey of Combinatorial Theory, (ed. J. N. Srivastava), North-Holland, 1973, 85–93. MR 51, 789.Google Scholar
  24. 22.
    (with W. W. Rouse Ball) Mathematical Recreations and Essays (12th ed.), University of Toronto Press, 1974. MR 50, 4229.Google Scholar
  25. 23.
    Regular Complex Polytopes, Cambridge University Press, 1974. MR51, 6555.Google Scholar
  26. 24.
    Polyhedral numbers, in Boston Studies in the Philosophy of Science, Vol. 15, (ed. R. S. Cohen, J. Stachel, and M. W. Wartofsky), Boston, Mass, 1974, 59–69.Google Scholar
  27. 25.
    Kepler and mathematics, in Vistas in Astronomy, Vol. 18, (ed. Arthur Beer), London, 1974.Google Scholar
  28. 26.
    Angels and Devils, in The Mathematical Gardner (ed. David Klarner), Wadsworth International, Belmont, CA, 1981, 197–209.MATHGoogle Scholar
  29. 27.
    (with Roberto Frucht and David L. Powers) Zero-Symmetric graphs: trivalent graphical regular representations of groups, Academic Press, New York, 1981.MATHGoogle Scholar
  30. 28.
    (with Roberto Frucht and D. L. Powers) Zero-Symmetric Graphs, Academic Press, 1981.Google Scholar

B. Research Papers and Expository Articles

  1. 1.
    The pure Archimedean polytopes in six and seven dimensions, Proc. Camb. Phil Soc. 24 (1928), 1–9.Google Scholar
  2. 2.
    The polytopes with regular-prismatic vertex figures I, Phil. Trans. Royal Soc. (A) 229 (1930), 329–425.Google Scholar
  3. 3.
    Groups whose fundamental regions are simplexes, Journal London Math. Soc. 6 (1931), 132–136.Google Scholar
  4. 4.
    The densities of the regular polytopes I, Proc. Camb. Phil. Soc. 27 (1931), 201–211.Google Scholar
  5. 5.
    The polytopes with regular-prismatic vertex figures II, Proc. London Math. Soc. (2) 34 (1932), 126–189.Google Scholar
  6. 6.
    The densities of the regular polytopes II, Proc. Camb. Phil. Soc. 28 (1932), 509–521.Google Scholar
  7. 7.
    The densities of the regular polytopes III, ibid. 29 (1933), 1–22.Google Scholar
  8. 8.
    Regular compound polytopes in more than four dimensions, Journal of Math, and Phys. 12 (1933), 334–345.Google Scholar
  9. 9.
    Discrete groups generated by reflections, Annals of Math. 35 (1934), 588–621.Google Scholar
  10. 10.
    On simple isomorphism between abstract groups, Journal London Math. Soc. 9 (1934), 211–212.Google Scholar
  11. 11.
    Abstract groups of the form \( V_i^k = V_j^3 = {({V_i}{\rm{ }}{V_j})^2} = 1 \), ibid, 213–219.Google Scholar
  12. 12.
    (with J. A. Todd) On points with arbitrarily assigned mutual distances, Proc. Camb. Phil. Soc. 30 (1934), 1–3.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Finite groups generated by reflections, and their subgroups Proc. Camb. Phil. Soc. 30 (1935), 466–482.Google Scholar
  14. 14.
    The functions of Schläfli and Lobatschefsky, Quarterly Journal of Math. 6 (1935), 13–29.Google Scholar
  15. 15.
    (with P. S. Donchian) An n-dimensional extension of Pythagoras’ theorem, Math. Gazette 19 (1935), 206.MATHCrossRefGoogle Scholar
  16. 16.
    The complete enumeration of finite groups \( R_i^2 = {({R_i}{\rm{ }}{R_j})^{{k_{ij}}}} = 1 \), Journal London Math. Soc. 10 (1935), 21–25.Google Scholar
  17. 17.
    Wythoff’s construction for uniform polytopes, Proc. London Math. Soc. (2) 38 (1935), 327–339.Google Scholar
  18. 18.
    The representation of conformal space on a quadric, Annals of Math. 37 (1936), 416–426.Google Scholar
  19. 19.
    The groups determined by the relations S 1 = T m = (S−1 T −1 ST)p = 1, Duke Math. Journal 2 (1936), 61–73.Google Scholar
  20. 20.
    An abstract definition for the alternating group..., Journal London Math. Soc. 11 (1936), 150–156.Google Scholar
  21. 21.
    (with J. A. Todd) Abstract definitions for the symmetry groups of the regular polytopes in terms of two generators I, Proc. Camb. Phil. Soc. 32 (1936), 194–200.CrossRefGoogle Scholar
  22. 22.
    The abstract groups R m = S m = (R j S j)Pj = 1,..., Proc. London Math. Soc. (2) 41 (1936), 278–301.Google Scholar
  23. 23.
    (with J. A. Todd) A practical method of enumerating cosets of a finite abstract group, Proc. Edinburgh Math. Soc. (2) 5 (1936), 26–34.MATHCrossRefGoogle Scholar
  24. 24.
    On Schläfli’s generalization of Napier’s pentagramma mirificum, Bull. Calcutta Math. Soc. 28 (1936), 123–144.Google Scholar
  25. 25.
    (with J. A. Todd) Abstract definitions for the symmetry groups of the regular polytopes in terms of two generators II, Proc. Camb. Phil. Soc. 33 (1937), 315–324.CrossRefGoogle Scholar
  26. 26.
    Regular skew polyhedra in three and four dimensions..., Proc. London Math. Soc. (2) 43 (1937), 33–62.Google Scholar
  27. 27.
    An easy method for constructing polyhedral group-pictures, Amer. Math. Monthly 45 (1938), 522–525.Google Scholar
  28. 28.
    The abstract groups G m,n,p, Trans. Amer. Math. Soc. 45 (1939), 73–150.Google Scholar
  29. 29.
    The regular sponges, or skew polyhedra, Scripta Mathematica 6 (1939), 240–244.Google Scholar
  30. 30.
    Regular and semi-regular polytopes, Math. Zeitschrift 46 (1940), 380–407, MR 2, 10.Google Scholar
  31. 31.
    A method for proving certain abstract groups to be infinite, Bull. Amer. Math. Soc. 46 (1940), 246–251, MR 1, 258.Google Scholar
  32. 32.
    (with R. Brauer) A generalization of theorems of Schonhardt and Mehmke on polytopes, Trans. Royal Soc. of Canada 34 (3), (1940), 29–34, MR 2, 125.MathSciNetMATHGoogle Scholar
  33. 33.
    The poly tope 221 whose 27 vertices correspond to the lines on the general cubic surface, Amer. Journal of Math. 62 (1940), 457–486, MR 2, 10.Google Scholar
  34. 34.
    The binary polyhedral groups, and other generalizations of the quaternion group, Duke Math. Journal 7 (1940), 367–379, MR 2, 214.Google Scholar
  35. 35.
    The map-coloring of unorientable surfaces, ibid. 10 (1943), 293–304, MR 5, 48.Google Scholar
  36. 36.
    A geometrical background for de Sitter’s world, Amer. Math. Monthly 50 (1943), 217-227, MR 4, 236.Google Scholar
  37. 37.
    Quaternions and reflections, Amer. Math. Monthly 53 (1946), 136–146, MR 7, 387.Google Scholar
  38. 38.
    Integral Cayley numbers, Duke Math. Journal 13, (1946), 561–578, MR 8, 370.Google Scholar
  39. 39.
    The nine regular solids, Proc. Canadian Math. Congress 1 (1947), 252–264, MR 8, 482.Google Scholar
  40. 40.
    The product of three reflections, Quarterly of Applied Math. 5 (1947), 217–222, MR 9, 549.Google Scholar
  41. 41.
    A problem of collinear points, Amer. Math. Monthly 55 (1948), 26–28, 247, MR 9, 458.Google Scholar
  42. 42.
    Configurations and maps, Rep. Math. Colloq. (2) 8 (1948), 18–38, MR 10, 616.Google Scholar
  43. 43.
    Projective geometry, Math. Magazine 23 (1949), 79–97, MR 11, 384.Google Scholar
  44. 44.
    Self-dual configurations and regular graphs, Bull. Amer. Math. Soc. 56 (1950), 413–455, MR 12, 350.Google Scholar
  45. 45.
    (with A. J. Whitrow) World structure and non-Euclidean honeycombs, Proc. R. S. A201 (1950), 417–437, MR 12, 866.MathSciNetGoogle Scholar
  46. 46.
    Extreme forms, Proc. Internat. Congress of Math. (1950), 294–295.Google Scholar
  47. 47.
    Extreme forms, Canad. J. Math. 3 (1951), 391–441. MR 13, 443.Google Scholar
  48. 48.
    The product of the generators of a finite group generated by reflections, Duke Math. J. 18 (1951), 765–782, MR 13, 528.Google Scholar
  49. 49.
    Interlocked rings of spheres, Scripta Math. 18 (1952), 113–121, MR 14, 494.Google Scholar
  50. 50.
    (with J. A. Todd) An extreme duodenary form, Canad. J. Math. 5 (1953), 384–392, MR 14, 1066.MathSciNetMATHCrossRefGoogle Scholar
  51. 51.
    The golden section, phyllotaxis, and Wythoff’s game, Scripta Math. 19 (1953), 135–143, MR 15, 246.Google Scholar
  52. 52.
    (with M. S. Longuet-Higgins and J. C. P. Miller), Uniform polyhedra, Phil. Trans. Royal Soc. (A) 246 (1954), 401–450, MR 15, 980.MathSciNetMATHCrossRefGoogle Scholar
  53. 53.
    Regular honeycombs in elliptic space, Proc. London Math. Soc. (3) 4 (1954), 471–501, MR 16, 1145.Google Scholar
  54. 54.
    Six uniform polyhedra, Scripta Math. 20 (1954), 227.Google Scholar
  55. 55.
    An extension of Pascal’s theorem, Amer. Math. Monthly 61 (1954), 723.Google Scholar
  56. 56.
    Arrangements of equal spheres in non-Euclidean spaces, Acta Math. Acad. Sci. Hungaricae 5 (1954), 263–276, MR 17, 523.Google Scholar
  57. 57.
    The area of a hyperbolic sector, Math. Gazette 39 (1955), 318.Google Scholar
  58. 58.
    On Laves’ graph of girth ten, Canad. J. Math. 7 (1955), 18–23, MR 16, 739.Google Scholar
  59. 59.
    The affine plane, Scripta Math. 21 (1955), 5–14, MR 16, 949.Google Scholar
  60. 60.
    Hyperbolic triangles, Scripta Math. 22 (1956), 5–13, MR 18, 412.Google Scholar
  61. 61.
    Regular honeycombs in hyperbolic space, Proc. Internat. Congress of Mathematicians (1956) 155–169, MR 19, 304.Google Scholar
  62. 62.
    The collineation groups of the finite affine and projective planes with four lines through each point, Abh. Math. Sem. Univ. Hamburg 20 (1956), 165–177, MR 18, 378.Google Scholar
  63. 63.
    Groups generated by unitary reflections of period two, Canad. J. Math. 9 (1957), 263–272, MR 19, 248.Google Scholar
  64. 64.
    Map-coloring problems, Scripta Math. 23 (1957), 11–25, MR 20, 7277.Google Scholar
  65. 65.
    Crystal symmetry and its generalizations (Presidential Address), Trans. Royal Society of Canada (III) 51 (1957), 1–13.Google Scholar
  66. 66.
    Lebesgue’s minimal problem, Eureka 21 (1958), 13.Google Scholar
  67. 67.
    The chords of the non-ruled quadric in PG(3,3), Canad. J. Math. 10 (1958), 484–488, MR 21, 841.Google Scholar
  68. 68.
    Twelve points in PG(5,3) with 95040 self-transformations, Proc. Royal Soc. London A 247 (1958), 279–293, MR 22, 1104.Google Scholar
  69. 69.
    On subgroups of the modular group, J. de Math. Pures Appl. 37 (1958), 317–319.Google Scholar
  70. 70.
    Close packing and froth, Illinois J. Math. 2 (1958), 746–758, MR 21, 848.Google Scholar
  71. 71.
    Factor groups of the braid group, Proc. 4th Canad. Math. Congress, Toronto Univ. Press, (1959), 95–122.Google Scholar
  72. 72.
    The four-color map problem, 1840–1890, Math. Teacher 52 (1959), 283–289, MR 21, 4414.Google Scholar
  73. 73.
    Symmetrical definitions for the binary polyhedral groups, Proceedings of Symposia in Pure Mathematics, Amer. Math. Soc. 1, (1959), 64–87, MR 22, 6850.Google Scholar
  74. 74.
    Polytopes over GF(2) and their relevance for the cubic surface group, Canad. J. Math. 11 (1959), 646–650, MR 21, 7476.Google Scholar
  75. 75.
    (with L. Few and C. A. Rogers) Covering space with equal spheres, Mathematika 6 (1959), 147–157, MR 23, A2131.MathSciNetMATHCrossRefGoogle Scholar
  76. 76.
    On Wigner’s problem of reflected light signals in de Sitter space, Proceedings of the Royal Society of London A A261 (1961), 435–442, MR 22, 13231.Google Scholar
  77. 77.
    Similarities and conformal transformations, Annali di Mat.pura ed appl. 53 (1961), 165–172, MR 26, 648.Google Scholar
  78. 78.
    Music and mathematics, Canadian Music Journal 6 (1962), 13–24.Google Scholar
  79. 79.
    The problem of packing a number of equal nonoverlapping circles on a sphere, Trans. New York Acad. Sci. (II) 24 (1962), 320–331.Google Scholar
  80. 80.
    The classification of zonohedra by means of projective diagrams, J. de Math, pures appl. 41 (1962), 137–156, MR 25, 4417.Google Scholar
  81. 81.
    The symmetry groups of the regular complex polygons, Archiv der Math. 13 (1962), 86–97, MR 26, 2516.Google Scholar
  82. 82.
    The abstract group G3,7,16, Proc. Edinburgh Math. Soc. (II) 13 (1962), 47–61 and 189, MR 26, 190 and 6267.Google Scholar
  83. 83.
    Projective line geometry, Mathematicae Notae Universidad Nacional del Literal, Rosario, Argentina 1 (1962), 197–216.Google Scholar
  84. 84.
    An upper bound for the number of equal nonoverlapping spheres that can touch another of the same size, Proc. Symposia in Pure Mathematics 7 (1963), 53–71, MR 29, 1437.Google Scholar
  85. 85.
    (with L. Fejes Tóth) The total length of the edges of a non-Euclidean polyhedron with triangular faces, Quarterly J. Math. 14 (1963), 273–284, MR 28, 1532.MATHCrossRefGoogle Scholar
  86. 86.
    (with B. L. Chilton) Polar zonohedra, Amer. Math. Monthly 70 (1963), 946–951.MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    (with S. L. Greitzer) L’hexagramme de Pascal, un essai pour reconstituer cette découverte, Le Jeune Scientifique 2 (1963), 70–72.Google Scholar
  88. 88.
    Regular compound tessellations of the hyperbolic plane, Proc. Royal Soc. A278 (1964), 147–167.Google Scholar
  89. 89.
    Achievement in maths, Varsity Graduate (Spring 1966) 15–18.Google Scholar
  90. 90.
    The inversive plane and hyperbolic space, Abh. Math. Sem. Univ. Hamburg 29 (1966), 217–242, MR 33, 7920.Google Scholar
  91. 91.
    Inversive distance, Annali di Matematica (4) 71 (1966), 73–83, MR 34, 3418.Google Scholar
  92. 92.
    Finite groups generated by unitary reflections, Abh. Math. Sem. Univ. Hamburg 31 (1967), 125–135, MR 37, 6358.Google Scholar
  93. 93.
    The Lorentz group and the group of homographies, Proc. Internat. Conf. on the Theory of Groups, (ed. L. G. Kovacs and B. H. Neumann), Gordon and Breach, New York (1967), 73–77.Google Scholar
  94. 94.
    Transformation groups from the geometric viewpoint, Proceedings of the CUPM Geometry Conference (1967), 1–72.Google Scholar
  95. 95.
    The Ontario K-13 geometry report, Ontario Mathematics Gazette 5.3 (1967), 12–16.Google Scholar
  96. 96.
    Music and mathematics, (reprinted from the Canadian Music Journal), Mathematics Teacher 61 (1968), 312–320.Google Scholar
  97. 97.
    The problem of Apollonius, Amer. Math. Monthly, 75 (1968), 5–15, MR 37, 5767.Google Scholar
  98. 98.
    Mid-circles and loxodromes, Math. Gazette 52 (1968), 1–8.Google Scholar
  99. 99.
    Loxodromic sequences of tangent spheres, Aequationes Mathematicae 1 (1968), 104–121, MR 38, 3765.Google Scholar
  100. 100.
    Affinities and their fixed points, The New Zealand Mathematics Magazine 6 (1969), 114–117.Google Scholar
  101. 101.
    Helices and concho-spirals, in Nobel Symposium 11, ed. Arne Engström and Bror Strandberg, Almqvist and Wiksell, Stockholm, (1969), 29–34.Google Scholar
  102. 102.
    Affinely regular polygons, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 34, Heft 1/2, (1969), Vandenhoeck & Ruprecht in Göttingen, MR 42, 2349.Google Scholar
  103. 103.
    Products of shears in an affine Pappian plane, Rendiconti di Matematica, VI 3 (1970), 1–6, MR 42, 2350.Google Scholar
  104. 104.
    Twisted honeycombs, (Regional Conference Series in Mathematics, No. 4), American Mathematical Society, Providence, R. I., (1970), MR 46, 3639.Google Scholar
  105. 105.
    Inversive geometry, Vinculum 7 (1970), 72–76.Google Scholar
  106. 106.
    The mathematics of map coloring, Leonardo 4 (1971), 273–277.Google Scholar
  107. 107.
    Frieze patterns, Acta Arithmetica 18 (1971), 297–310, MR 44, 3980.Google Scholar
  108. 108.
    Cyclic sequences and frieze patterns, Vinculum 8 (1971), 4–7.Google Scholar
  109. 109.
    An ancient tragedy, Mathematical Gazette 55 (1971), 312.Google Scholar
  110. 110.
    The role of intermediate convergents in Tait’s explanation for phyllotaxis, Journal of Algebra 20 (1972), 168–175, MR 45, 4255.Google Scholar
  111. 111.
    (with J. H. Conway and G. C. Shephard) The centre of a finitely generated group, Tensor 25 (1972), 405–418, 26 (1972), 477, MR 48, 11326.MathSciNetMATHGoogle Scholar
  112. 112.
    (with J. H. Conway) Triangulated polygons and frieze patterns, Mathematical Gazette 57 (1973), 87–94, 175–186, MR 57, 1254, 1255.MathSciNetMATHCrossRefGoogle Scholar
  113. 113.
    The Dirac matrix group and other generalizations of the quaternion group, Communications on Pure and Applied Mathematics 26 (1973), 693–698, MR 48, 11275.Google Scholar
  114. 114.
    The equianharmonic surface and the Hessian polyhedron, Annali di Matematica (4) 98 (1974), 77–92, MR 51, 5605.Google Scholar
  115. 115.
    Desargues configurations and their collineation groups, Math. Proc. Cambridge Philos. Soc. 78 (1975), 227–246, MR 52, 9070.Google Scholar
  116. 116.
    The space-time continuum, Historia Mathematica 2 (1975), 289–298.Google Scholar
  117. 117.
    The Pappus configuration and its groups, K. Nederl. Akad. Wetensch, Amsterdam Verslag Afd. Natuurkunde 85 (1976), 44–46, MR 52, 14303.Google Scholar
  118. 118.
    The Erlangen program, The Mathematical Intelligencer 0 (1977), 22.Google Scholar
  119. 119.
    The Pappus configuration and its groups, Pi Mu Epsilon J. 6 (1977), 331-336, MR 56, 5330.Google Scholar
  120. 120.
    (with G. C. Shephard) Regular 3-complexes with toroidal cells, Journal of Combinatorial Theory 22 (1977), 131–138, MR 55, 11140.MathSciNetMATHCrossRefGoogle Scholar
  121. 121.
    The Pappus configuration and the self-inscribed octagon, Proc. K. Nederl. Akad. Wetensch. A 80 (1977), 256–300.Google Scholar
  122. 122.
    (with C. M. Campbell and E. F. Robertson) Some families of finite groups having two generators and two relations, Proc. Royal Soc. London A357 (1977), 423–438, MR 57, 463.MathSciNetGoogle Scholar
  123. 123.
    Gauss as a geometer, Historia Mathematica 4 (1977), 379–396.Google Scholar
  124. 124.
    Polytopes in the Netherlands, Nieuw Archief voor Wiskunde (3) 26 (1978), 116–141.Google Scholar
  125. 125.
    Review of Three-Dimensional Nets and Polyhedra by A. F. Wells, Bull Amer. Math. Soc. 84 (1978), 466–470.MathSciNetCrossRefGoogle Scholar
  126. 126.
    The amplitude of a Petrie polygon, C. R. Math. Rep. Acad. Sci. Canada 1 (1978), 9–12.Google Scholar
  127. 127.
    Parallel lines, Canad. Math. Bull. 21 (1978), 385–397.Google Scholar
  128. 128.
    On R. M. Foster’s regular maps with large faces, AMS Proc. Symp. Pure Math. 34 (1979), 117–128.Google Scholar
  129. 129.
    (with R. W. Frucht) A new trivalent symmetrical graph with 110 vertices, Annals New York Acad. Sci. 319 (1979), 141–152.MathSciNetCrossRefGoogle Scholar
  130. 130.
    The non-Euclidean symmetry of Escher’s picture ‘Circle Limit III,’ Leonardo 12 (1979), 19–25.Google Scholar
  131. 131.
    The derivation of Schoenberg’s star polytopes from Schoute’s simplex nets, C. R. Math. Rep. Acad. Sci. Canada 1 (1979), 195.Google Scholar
  132. 132.
    (with Pieter Huybers) A new approach to the chiral Archimedean solids, C. R. Math. Rep. Acad. Sci. Canada 1 (1979), 269–274.MathSciNetGoogle Scholar
  133. 133.
    Angles and arcs in the hyperbolic plane, Math. Chronicle 9 (1980), 17–33.Google Scholar
  134. 134.
    Higher-dimensional analogues of the tetrahedrite crystal twin, Match 9 (1980), 67–72.Google Scholar
  135. 135.
    The edges and faces of a 4-dimensional polytope, Congressus Numerantium 28 (1980), 309–334.Google Scholar
  136. 136.
    A systematic notation for the Coxeter graph, C. R. Math. Rep. Acad. Sci. Canada 3 (1981), 329–332.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Chandler Davis
    • 1
  • Branko Grünbaum
    • 2
  • F. A. Sherk
    • 1
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsUniversity of WashingtonSeattleUSA

Personalised recommendations