Skip to main content

The Manipulation of Physical, Chemical, and Biological Factors to Select Species from Natural Phytoplankton Communities

  • Chapter
Marine Mesocosms

Abstract

Phytoplankton competition and the resultant species succession is governed by physical, chemical, and biological factors. The ability to manipulate this succession of species at will by changing certain key factors is an important step in understanding interspecific competition. Controlled changes of speciescomposition also can be used to examine how changes in phytoplankton speciescomposition affect higher trophic levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • D. M. Anderson and D. Wall 1978. Potential importance of benthic cysts of Gonyaulax tamarensis and G. excavata in initiating toxic dinoflagellate blooms. J. Phycol. 14: 224–234.

    Article  Google Scholar 

  • J. H. Andrews 1976. The pathology of marine algae. BioI. Rev. 51: 211–253.

    Article  CAS  Google Scholar 

  • N. J. Antia B. R. Berland D. J. Bonin and S. Y. Maestrini 1975. Comparative evaluations of certain organic and inorganic sources of nitrogen for phototrophic growth of marine microalgae. J. Mar. Biol. Assoc. U.K. 55: 519–539.

    Article  CAS  Google Scholar 

  • N. J. Antia B. R. Berland D. J. Bonin and S. Y. Maestrini 1977. Effects of urea concentration in supporting growth of certain marine microplanktonic algae. Phycologia 16: 105–111.

    Google Scholar 

  • N. J. Antia B. R. Berland and D. J. Bonin 1980. Proposal for an abridged nitrogen turnover cycle in certain marine planktonic systems involving hypoxanthine-guanine excretion by ciliates and their reutilization by phytoplankton. Mar. Ecol. Prog. Ser. 2: 97–103.

    Google Scholar 

  • Y. Y.Braga, and L. D. Druehl. 1978. Seasonal growth and succession of tropical and introduced phytoplankton cultured in deep sea water. Aquaculture 14: 1-12.

    Google Scholar 

  • A. T.Chan 1978. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. I. Growth under continuous light. J. Phycol. 14: 396-402.

    Google Scholar 

  • A. T.Chan 1980. Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth and carbon/chlorophyll a ratio. J. Phycol. 16: 428-432.

    Google Scholar 

  • C. 0.Davis, P. J. Harrison, and R. C. Dugdale. 1973. Continuous culture of marine diatoms under silicate limitation. I. Synchronized life cycle of Skeletonema costatum. J. Phyeol. 9: 175-180.

    Google Scholar 

  • C. 0.Davis, J. T. Hollibaugh, D. L. R. Seibert, W. H. Thomas, and P. J. Harrison. 1980. Formation of resting spores by Leptoeylindrus danicus (Bacillariophyceae) in a controlled experimental ecosystem. J. Phycol. 16: 296-302.

    Google Scholar 

  • W. M.Dunstan 1973. A comparison of the photosynthesis-light intensity relationship in phylogenetically different marine microalgae. J. Exp. Mar. Biol. Ecol.I3: 181-187.

    Google Scholar 

  • M.Elbrachter 1976. Population dynamic studies on phytoplankton cultures. Mar. BioI. 35: 201-209.

    Google Scholar 

  • R. W.Eppley 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063-1086.

    Google Scholar 

  • R. W.Eppley, P. Koeller, and G. T. Wallace, Jr. 1978. Stirring influences the phytoplankton species composition within enclosed columns of coastal sea water. J. Exp. Mar. BioI. Eeol. 32: 219-239.

    Google Scholar 

  • R. W.Eppley, J. N. Rogers, and J. J. McCarthy. 1969. Half-saturation constant for uptake of nitrate and ammonium by marine phytoplankton. Limnol. Oceanogr. 14: 912-920.

    Google Scholar 

  • B. W.Frost 1977. Feeding behaviour of Calanus pacificus in mixtures of food particles. Limnol. Oeeanogr. 22: 472-491.

    Google Scholar 

  • M.Furnas 1978. Influence of temperature and cell size on the division rate and chemical content of the diatom Chaetoeeros curvisetum Cleve. J. Exp. Mar. BioI. Ecol. 34: 97-109.

    Google Scholar 

  • J. C.Goldman 1979. Outdoor algal mass cultures-I. Applications. Water Res. 13: 1-9.

    Google Scholar 

  • J. C.Goldman, and R. Mann. 1980. Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures. J. Exp. Mar. Bioi. Eco!' 46: 29-39.

    Google Scholar 

  • J. C.Goldman, and J. H. Ryther. 1976. Temperature-influenced species competition in mass culture of marine phytoplankton. Biotechnol. Bioeng. 18: 1125-1144.

    Google Scholar 

  • G. D.Grice, R. P. Harris, M. R. Reeve, J. F. Heinbokel, and C. O. Davis. 1980. Large-scale enclosed water-column ecosystems: An overview of Foodweb I, the final CEPEX experiment. J. Mar. Bioi. Assoc. U.K. 60: 401-414.

    Google Scholar 

  • P. J.Harrison, and C. O. Davis. 1979. The use of outdoor phytoplankton continuous cultures to analyse factors influencing species selection. J. Exp. Mar. Bioi. Ecol. 41: 9-23.

    Google Scholar 

  • L. A.Hobson 1974. Effects of interactions of irradiance, daylength and temperature on division rates of three species of marine unicellular algae. J. Fish. Res. Bd. Can. 31: 391-395.

    Google Scholar 

  • G. F.Humphrey 1979. Photosynthetic characteristics of algae grown under constant illumination and light-dark regimes. J. Exp. Mar. Bioi. Ecol. 40: 63-70.

    Google Scholar 

  • H.Kayser 1979. Growth interactions between marine dinoflagellates in multispecies culture experiments. Mar. BioI. 52: 357-369.

    Google Scholar 

  • E. A.Laws 1975. The importance of respiration losses in controlling the size distribution of marine phytoplankton. Ecology 56: 419-426.

    Google Scholar 

  • N. S. T.Lui, and O. A. Roels. 1972. Nitrogen metabolism of aquatic organisms. II. The assimilation of nitrate, nitrite and ammonia by Biddulphia aurita. J. Phycol. 8: 259-264.

    Google Scholar 

  • R.Margalef 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol. Acta 1: 493-509.

    Google Scholar 

  • J.Marra 1978. Phytoplankton photosynthetic response to vertical movement in a mixed layer. Mar. Bioi. 46: 203-208.

    Google Scholar 

  • J.Mayer A., and F. J. R. Taylor. 1979. A virus which lyses the marine nanoflagellate Micromonas pusilla. Nature 281: 299-301.

    Google Scholar 

  • M. J.Mickelson, H. Maske, and R. C. Dugdale. 1979. Nutrient determined dominance in multispecies chemostat cultures of diatoms. Limnol. Oceanogr. 24: 298-315.

    Google Scholar 

  • A. H.Neilson, and T. Larsson. 1980. The utilization of organic nitrogen for growth of algae: Physiological aspects. Physiol. Plant. 48: 542-553.

    Google Scholar 

  • D. M.Nelson, and L. E. Brand. 1979. Cell division periodicity in 13 species of marine phytoplankton on a light:dark cycle. J. Phycol. 15: 67-75.

    Google Scholar 

  • R.Patrick 1974. Effects of abnormal temperatures on algal communities. In J. W. Gibbons and R. R. Sharitz, Eds., Thermal ecology. AEC Syrnp. Series (CONF-730505), U.S. Dept. Commerce. National Technical Information Service, Springfield, Va.

    Google Scholar 

  • Rhee, G-Yull. 1978. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol. Oceanogr. 23: 10-25.

    Google Scholar 

  • J. H.Ryther 1956. Photosynthesis in the ocean as a function of light intensity. Limnol.Oceanogr. 1: 61-70.

    Google Scholar 

  • D. W.Schindler 1977. Evolution of phosphorus limitation in lakes. Science 195: 260-262.

    Google Scholar 

  • J. H.Sharp, P. A. Underhill, and D. T. Hughes. 1979. Interaction (allelopathy) between diatoms: Thalassiosira pseudonana and Phaeodactylum tricornutum. J. Phycol. 15: 353-362.

    Google Scholar 

  • T. J.Smayda 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. Bioi. Ann. RelJ. 8: 353-414.

    Google Scholar 

  • W. D. P.Stewart, and M. J. Daft. 1977. Microbial pathogens of cyanophycean blooms. Adv. Aquat. Microbiol. 1: 177-216.

    Google Scholar 

  • H. A.Von Stosch, G. Theil, and K. V. Kowallik. 1973. Entwicklungsgeschichtliche Untersuchungen an zentrischen Diatomeen. V. Bau und Lebenszyklus von Chaetoceros didymum, mit Beobachtungen tiber einige andere Arten der Gattung. HelgoI. Wiss. Meeresunters. 25: 384-445.

    Google Scholar 

  • F. J.Taylor 1976. A fungal parasite in the marine diatom Coscinodiscus oculusiridis. Bot. Mar. 19: 61-62.

    Google Scholar 

  • W. H.Thomas, and A. N. Dodson. 1974. Effect of interactions between temperature and nutrient supply on the cell-division rates of two marine phytoflagellates. Mar. BioI. 24: 213-217.

    Google Scholar 

  • W. H.Thomas, A. N. Dodson, and F. M. H. Reid. 1978. Diatom productivity compared to other algae in natural marine phytoplankton assemblages. 1. Phycol. 14: 250-253.

    Google Scholar 

  • W. H.Thomas, M. Pollock, and D. L. R. Seibert. 1980. Effects of simulated upwelling and oligotrophy on chemostat-grown natural marine phytoplankton assemblages. J. Exp. Mar. Bioi. Ecol. 45: 25-36.

    Google Scholar 

  • D.Titman 1976. Ecological competition between algae: Experimental confirmation of resource-based competition theory. Science 192: 463-465.

    Google Scholar 

  • D. H. Turpin 1980. Processes in nutrient based phytoplankton ecology. Ph.D. thesis, Univ. British Columbia.

    Google Scholar 

  • D. H. Turpin and P. J. Harrison. 1979. Limiting nutrient patchiness and its role in phytoplankton ecology. J. Exp. Mar. BioI. Ecol. 39: 151–166.

    Article  CAS  Google Scholar 

  • D. H. Turpin and P. J. Harrison. 1980. Cell size manipulation in natural marine planktonic diatom communities. Can. J. Fish. Aquat. Sci. 37: 1193–1195.

    Article  Google Scholar 

  • D. H. Turpin P. E. K. Dobell and F. J. R. Taylor. 1978. Sexuality and cyst formation in Pacific strains of the toxic dinoflagellate Gonyaulax tamarensis. J. Phycol. 14: 235–238.

    Article  Google Scholar 

  • D. G. Wallen and G. H. Geen. 1971. Light quality and concentration of protein, RNA, DNA and photosynthetic pigments in two species of marine plankton algae. Mar, Bioi. 10: 44–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Harrison, P.J., Turpin, D.H. (1982). The Manipulation of Physical, Chemical, and Biological Factors to Select Species from Natural Phytoplankton Communities. In: Grice, G.D., Reeve, M.R. (eds) Marine Mesocosms. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5645-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5645-8_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5647-2

  • Online ISBN: 978-1-4612-5645-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics