Minimal \({{\text{P}}_{{O_2}}}\) in Working and Resting Tissues

  • D. W. Lübbers
Conference paper
Part of the Topics in Environmental Physiology and Medicine book series (TEPHY)


Oxygen is supplied to the tissues by convection, i.e., by blood perfusion, and by diffusion. The energy for convection is produced by the heart. The energy for diffusional transport originates from the O2 gradient between capillaries and tissues which is built up by the oxygen consumption of the tissue oxidases (18). The local tissue P O2 varies with both flow and O2 transport capacity of the blood, as well as with the distance from the arterial supply and the O2 consumption of the tissue. Thus, an oxygen pressure field develops around the capillary which characterizes the oxygen supply of the tissue. To understand the effect of the different parameters which influence the oxygen supply of the tissue, an analysis with a simplified model, the Krogh model, is useful (12,13,28,35) (Fig. 7-1). It considers a single capillary which supplies a cylindric space of constant radius and homogeneous oxygen consumption.


Oxygen Pressure Oxygen Supply Oxygen Transport Oxygen Carrier Hemoglobin Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Addicks, K., Weigelt, H., Hauck, G., Lübbers, D. W., and Knoche, H.: Light- and electronmicroscopic studies with regard to the role of intraendothelial structures under normal and inflammatory conditions. In: Microcirculation in Inflammation. Bibl. Anat. 17:21, 1979.Google Scholar
  2. 2.
    Cassian, S., Gilbert, R. D., Bunnel, C. E., and Johnson, E. M.: Capillary development during exposure to chronic hypoxia. Am. J. Physiol. 220: 448, 1971.Google Scholar
  3. 3.
    Chance, B., Schoener, B., and Schindler, F.: The extracellular oxidation reduction state. In Dickens, F. and Neil, E. (eds.): Oxygen in the Animal Organism. London, Pergamon Press, 1966, pp. 367–388.Google Scholar
  4. 4.
    Diemer, K. and Henn, R.: Kapillarvermehrung in der Hirnrinde der Ratte unter chronischem Sauerstoffmangel. Naturwissenschaften 52: 135, 1965.CrossRefGoogle Scholar
  5. 5.
    Erecinska, M., Wilson, D. F., and Nishiki, K.: Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am. J. Physiol. 234: C82, 1978.PubMedGoogle Scholar
  6. 6.
    Grossmann, U. and Lübbers, D. W.: The size of the hypoxic zone at the border of an anoxic region within the tissue. In: Oxygen Transport to Tissue. III. Adv. Exp. Med. Biol. 94:655, 1977.Google Scholar
  7. 7.
    Hoofd, L. and Kreuzer, F.: Calculation of the facilitation of O2 or CO transport by Hb or Mb by means of a new method for solving the carrier-diffusion problem. In: Oxygen Transport to Tissue. III. Adv. Exp. Med. Biol. 94:163, 1978.Google Scholar
  8. 8.
    Kessler, M.: Lebenserhaltende Mechanismen bei Sauerstoffmangel und bei Störungen der Organdurchblutung. München, Mitteilungen der Max-Planck-Gesellschaft, 1974, pp. 444–463.Google Scholar
  9. 9.
    Kinnula, V. L.: Rat liver mitochondrial enzyme activities in hypoxia. Acta Physiol. Scand. 95: 54, 1975.PubMedCrossRefGoogle Scholar
  10. 10.
    Kreuzer, F.: Influence of dissociation curve. This volume, 9.Google Scholar
  11. 11.
    Kreuzer, F.: Facilitated diffusion of oxygen and its possible significance; a review. Respir. Physiol. 9: 1, 1970.PubMedCrossRefGoogle Scholar
  12. 12.
    Krogh, A.: The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (Lond.) 52: 409, 1919.Google Scholar
  13. 13.
    Krogh, A.: The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion. J. Physiol. (Lond.) 52: 391, 1919.Google Scholar
  14. 14.
    Leniger-Follert, E., Wrabetz, W., and Lübbers, D. W.: Local tissue pO2 and microflow of the brain cortex under varying arterial oxygen pressure. In Grote, J., et al. (eds.): Oxygen Transport to Tissue. II. New York, Plenum Press, 1976, pp. 361–367.Google Scholar
  15. 15.
    Lowry, O. H.: Energy metabolism in brain and its control. In Ingvar, D. H. and Lassen, N. A. (eds.): Brain Work. Copenhagen, Munksgaard, 1975, pp. 49–63.Google Scholar
  16. 16.
    Lübbers, D. W.: The meaning of the tissue oxygen distribution curve and its measurement by means of Pt electrodes. In Kreuzer, F. (ed.): Oxygen Pressure Recording in Gases, Fluids and Tissues. Basel, Karger, 1969, pp. 112–123.Google Scholar
  17. 17.
    Lübbers, D. W.: Das O2-Versorgungssystem der Warmblüterorgane. Jahrb. d. Max-Planck-Gesellschaft zur Förderung der Wissenschaften. München, 1974, pp. 87–112.Google Scholar
  18. 18.
    Lübbers, D. W.: Exchange processes in the microcirculatory bed. In Meessen, H. (ed.): Handbuch der allgemeinen Pathologie, III/7. Mikrozirkulation/Microcirculation. Berlin, Springer-Verlag, 1977, pp. 411–476.Google Scholar
  19. 19.
    Lübbers, D. W.: Quantitative measurement and description of oxygen supply to the tissue. In Jöbsis, F. F. (ed.): Oxygen and Physiological Function. Dallas, Professional Information Library, 1977, pp. 254–276.Google Scholar
  20. 20.
    Lübbers, D. W., Hauck, G., and Weigelt, H.: Reaction of capillary flow to electrical stimulation of the capillary wall and to application of different ions. In Betz, F. (ed.): Ionic Actions on Vascular Smooth Muscle. Berlin, Springer-Verlag, 1976, pp. 44–47.Google Scholar
  21. 21.
    Lübbers, D. W., Hauck, G., Weigelt, H., and Addicks, K.: Contractile properties of frog capillaries tested by electrical stimulation. In: Microcirculation in Inflammation. Bibl. Anat. 17:3, 1979.Google Scholar
  22. 22.
    Lübbers, D. W. and Leniger-Follert, E.: Capillary flow in the brain cortex during changes in oxygen supply and state of activation. In: Cerebral Vascular Smooth Muscle and its Control. Ciba Foundation Symposium 56. Amsterdam, Elsevier, 1978, pp. 21–47.Google Scholar
  23. 23.
    Lübbers, D. W. and Stosseck, K.: Quantitative Bestimmung der lokalen Durchblutung durch elektro-chemisch im Gewebe erzeugten Wasserstoff. Naturwissenschaften 57: 311, 1970.PubMedCrossRefGoogle Scholar
  24. 24.
    Mela, L., Goodwin, C. W., and Miller, L. D.: In vivo control of mitochondrial enzyme concentrations and activity by oxygen. Am. J. Physiol. 31 (6): 1811, 1976.Google Scholar
  25. 25.
    Mela, L., Goodwin, C. W., and Miller, L. D.: In vivo adaption of O2 utilization to O2 availability: comparison of adult and newborn mitochondria. In Jöbsis, F. F. (ed.): Oxygen and Physiological Function. Dallas, Professional Information Library, 1977, pp. 285–292.Google Scholar
  26. 26.
    Miller, A. T., Jr. and Hale, D. M.: Increased vascularity of brain, heart, and skeletal muscle of polycythemic rats. Am. J. Physiol. 219: 702, 1970.PubMedGoogle Scholar
  27. 27.
    Opitz, E.: Increased vascularization of the tissue due to acclimatization to high altitude and its significance for oxygen transport. Exp. Med. Surg. 9: 389, 1951.PubMedGoogle Scholar
  28. 28.
    Opitz, E. and Schneider, M.: Über die Sauerstoffversorgung des Gehirns und den Mechanismus von Mangelwirkungen. Ergebn. Physiol. 46: 126, 1950.Google Scholar
  29. 29.
    Ou, L. C. and Tenney, S. M.: Properties of mitochondria from hearts of cattle acclimatized to high altitude. Respir. Physiol. 8: 151, 1970.PubMedCrossRefGoogle Scholar
  30. 30.
    Reneau, D. D. and Silver, I. A.: Some effects of high altitude and polycythaemia on oxygen delivery. In Silver, I. A., Erecinska, M., and Bicher, H. I. (eds.): Oxygen Transport to Tissue. III. New York, Plenum Press, 1977, pp. 245–253.Google Scholar
  31. 31.
    Schmid-Schönbein, H.: Blood rheology. This volume, 15.Google Scholar
  32. 32.
    Shertzer, H. G. and Cascarano, J.: Mitochondrial alterations in heart, liver, kidney of altitude acclimated rats. Am. J. Physiol. 223: 632, 1972.PubMedGoogle Scholar
  33. 33.
    Starlinger, H. and Lübbers, D. W.: Polarographic measurement of the oxygen pressure performed simultaneously with optical measurements of the redox state of the respiratory chain in suspensions of mitochondria under steady-state conditions at low oxygen tensions. Pflügers Arch. 341: 15, 1973.PubMedCrossRefGoogle Scholar
  34. 34.
    Tenney, S. M. and Ou, L. C.: Physiological evidence for increased tissue capillarity in rats acclimatized to high altitude. Respir. Physiol. 8: 137, 1970.PubMedCrossRefGoogle Scholar
  35. 35.
    Thews, G.: Implications to physiology and pathology of oxygen diffusion at the capillary level. In Schade, J. P. and McMenemy, W. H. (eds.): Selective Vulnerability of the Brain in Hypoxia. Oxford, Blackwell, 1963, pp. 27–35.Google Scholar
  36. 36.
    Turek, Z., Grandtner, M., and Kreuzer, F.: Cardiac hypertrophy, capillary and muscle fiber density, muscle fiber diameter, capillary radius and diffusion distance in the myocardium of growing rats adapted to a simulated altitude of 3500 m. Pflügers Arch. 335: 19, 1972.PubMedCrossRefGoogle Scholar
  37. 37.
    Turek, Z., Kreuzer, F., and Hoofd, L. J. C.: Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia. A theoretical study comparing man and rat. Pfliigers Arch. 342: 185, 1973.CrossRefGoogle Scholar
  38. 38.
    Valdivia, E.: Total capillary bed of the myocardium in chronic hypoxia. Fed. Proc. 21: 221, 1962.Google Scholar
  39. 39.
    Weigelt, H., Addicks, K., Hauck, G., Lubbers, D. W.: Vital microscopic studies in regard to the role of intraendothelian reactive structures in the inflammatory process. In: Microcirculation in Inflammation. Bibl. Anat. 17:11, 1979.Google Scholar
  40. 40.
    Wilson, D. F., Erecinska, M., Drown, C., and Silver, I. A.: Effect of oxygen tension on cellular energetics. Am. J. Physiol. 233: C135, 1977.PubMedGoogle Scholar
  41. 41.
    Wilson, D. F., Erecinska, M., and Sussman, I.: Control of energy flux in biological systems. In: Energy Conservation in Biological Membranes. Berlin, Springer-Verlag, 1978, pp. 255–263.Google Scholar
  42. 42.
    Wilson, D. F., Owen, C. S., and Erecinska, M.: Regulation of mitochondrial respiration in intact tissue: a mathematical model. In Silver, I. A., Erecinska, M., and Bicher, H. I. (eds.): Oxygen Transport to Tissue. III. New York, Plenum Press, 1978, pp. 279–287.Google Scholar
  43. 43.
    Wittenberg, B. A., Wittenberg, J. B., and Caldwell, P. R. B.: Role of myoglobin in the oxygen supply to red skeletal muscle. J. Biol. Chem. 250: 9038, 1975.PubMedGoogle Scholar
  44. 44.
    Wittenberg, J. B.: Myoglobin-facilitated oxygen diffusion: role of myoglobin in oxygen entry into muscle. Physiol. Rev. 50: 559, 1970.PubMedGoogle Scholar
  45. 45.
    Wyman, J.: Facilitated diffusion and the possible role of myoglobin as a transport mechanism. J. Biol. Chem. 241: 115, 1966.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1982

Authors and Affiliations

  • D. W. Lübbers

There are no affiliations available

Personalised recommendations