Skip to main content

The Role of Arachidonic Acid in Cellular Brain Edema

  • Chapter
Neural Membranes

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Abstract

Cerebral edema is defined as an increase in brain volume due to an increase in its water and sodium content. Based on neuropathological and experimental observations, brain edema has been divided into three major categories (Klatzo, 1967: Fishman, 1975, 1980, 1981: Fishman and Chan, 1980): 1) Vasogenic edema indicates increased permeability in capillary endothelial cells associated with an expanded extracellular volume. 2) Cellular (cytotoxic) edema indicates the increase in intracellular volume of brain cells associated with a decreased extracellular volume. 3) Interstitial or hydrocephalic edema indicates the increase in brain water that characterizes obstructive hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, K and Thomas, BS (1971) The effects of long chain fatty acids on sodium plus potas¬sium ion-stimulated adenosine triphosphatase of rat brain. J. Biol. Chem. 246, 103–109.

    PubMed  CAS  Google Scholar 

  • Bazan, NG and Turco, EBR (1980) Membrane lipids in the pathogenesis of brain edema - phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia. Adv. Neurol. 28, 197–205.

    PubMed  CAS  Google Scholar 

  • Capdevila, J, Chacoa, N, Werringloer, J, Prough, RA and Estabrook, RW (1981) Liver microsomal cytochrome P-450 and the oxidative metabolism of arachidonic acid.

    Google Scholar 

  • Chan, PH and Fishman, RA (1978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201, 358–360

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH and Fishman, RA (1980) Transient formation superoxide radicals in polyunsaturated fatty acids-induced brain swelling., J. Neurochem. 35, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH and Fishman, RA (1982) Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells., Brain Res. 248, 151–157.

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH and Fishman, RA (1982) Phospholipid degradation and the early release of polyunsaturated fatty acids in the evolution of brain edema., 5th International Symposium on Brain Edema (in press).

    Google Scholar 

  • Chan, PH, Fishman, RA, Lee, JL and Quan, SC (1980) Arachidonic acid-induced swelling in incubated rat brain cortical slices: Effect of bovine serum albumin. Neurochem. Res. 5, 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH, Kerlan, R and Fishman, RA (1982) Reductions of GABA and glutamate uptake and (Na++K+)-ATPase activity in brain slices and synaptosomes by arachidonic acid. J. Neurochem. (in press)

    Google Scholar 

  • Chan, PH, Yurko, M and Fishman, RA (1982) Phospholipid degradation and cellular edema induced by free radicals in brain cortical slices. J. Neurochem. 38, 525–531

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos, HB, Flamm, ES, Seligman, ML, Mitamauir, JA and Ransohoff, J (197 9) Memorane perturbations in central nervous system injury: Theoretical basis for free radical damage and a review of the experimental data. In: Neural Trauma (Popp, J, Bourke, RS, Nelson, LR and Kimelberg, HK, eds.) pp. 63–78, Raven Press, New York.

    Google Scholar 

  • Fishman, RA (1975) Brain edema. N. Eng. J. Med. 293, 706–711.

    Article  CAS  Google Scholar 

  • Fishman, RA (1980) Brain edema. In: Cerebrospinal Fluid in Diseases of the Nervous System, pp. 107–128, Saunders, Philadelphia.

    Google Scholar 

  • Fishman, RA (1981) Brain edema. In: Basic Neurochemistrv pp. 681–691, Little, Brown and Co., Boston.

    Google Scholar 

  • Fishman, RA (1982) Steroids in the treatment of brain edema (editorial). N. Eng. J. Med. 306, 359–360.

    Article  CAS  Google Scholar 

  • Fishman, RA and Chan, PH (1980) Metabolic basis of brain edema. In: Advances in Neurology (Cervos-Navarro, J and Ferszt, R, eds.) Vol. 28, pp. 207–214, Raven Press, New York

    Google Scholar 

  • Fishman, RA and Chan, PH (1981) Hypothesis: Membrane phospholipid degradation and polyunsaturated fatty acids play a key role in the pathogenesis of brain edema. Ann. Neurol. 10, 75

    Google Scholar 

  • Fridovich, SE and Porter, NA (1981) Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide. J. Biol. Chem. 256, 260–265.

    PubMed  CAS  Google Scholar 

  • Klatzo, I (1967) Neuropathological aspects of brain edema. J. Neuropathol. Exp. Neurol. 26, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Klausner, RD, Kleinfeld, AM, Hoover, Karnovsky (1980) Lipid domains in membrane. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J. Biol. Chem. 255, 1286–1295.

    PubMed  CAS  Google Scholar 

  • Mead, JF (1976) Free radicals mechanisms of lipid damage and consequences for cellular membranes., In: Free Radicals in Biology (Pryor, WA, ed.) Vol. 1, pp. 51–68, Academic Press, New York

    Google Scholar 

  • Samuelsson, B, Hammarstrom, S and Borgeat, P (1979) Pathway of arachidonic acid metabolism. Adv. Inflam. Res. 1, 405–411.

    CAS  Google Scholar 

  • Sun, GY and Sun, AY (1974) Synaptosomal plasma membranesacyl group composition of phosphoglyceri desand (N a++ K+) - AT Pase activity during fatty acid deficiency. J. Neurochem. 22, 15–18.

    Article  PubMed  CAS  Google Scholar 

  • Usher, JR, Epand, RM and Papahadjopoulos, D (1978) The effect of free fatty acids on the thermotropic phase transition of dimyristoyl glycrophosphocholine. Chem. Phys. Lipids 22, 245–253.

    Article  PubMed  CAS  Google Scholar 

  • Wojtezak, L (1976) Effect of long-chain fatty acids and acyl-CoA on mitrochondria1 permeability, transport, and energy-coupling processes. J. Bioenerg. Biomemb. 8, 293–311.

    Google Scholar 

  • Wolfe, LS (1982) Eicosanoids: prostaglandins, thromboxanes, leukotrienes, and other deriva-tives of carbon-20 unsaturated fatty acids. J. Neurochem. 38, 1–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Grace Y. Sun Nicolas Bazan Jang-Yen Wu Guiseppe Porcellati Albert Y. Sun

Rights and permissions

Reprints and permissions

Copyright information

© 1983 The Humana Press Inc.

About this chapter

Cite this chapter

Chan, P.H., Fishman, R.A., Longar, S., Chen, S., Chew, S. (1983). The Role of Arachidonic Acid in Cellular Brain Edema. In: Sun, G.Y., Bazan, N., Wu, JY., Porcellati, G., Sun, A.Y. (eds) Neural Membranes. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-5636-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5636-6_6

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-5638-0

  • Online ISBN: 978-1-4612-5636-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics