Skip to main content

Involvement of Phospholipid Metabolites in Neuronal Membrane Functions

  • Chapter

Part of the book series: Experimental and Clinical Neuroscience ((ECN))

Abstract

Since the proposal of the fluid mosaic model of membrane structure by Singer and Nicolson (1972), new research interests were initiated towards understanding the structure and functions of biological membrane. Modern biochemical and biophysical techniques have been developed for probing the membrane properties, and through these studies, unique features of membrane topography have been revealed. Indeed, we are only beginning to realize the complexity of the structural organization of biomembranes and the intricate metabolic relationships among the membrane components. Consequently, the modern concept of biological membrane has evolved from what used to be a simple lipid bilayer structure to include more detailed considerations such as presence of pools, hydrophobicity, charges, channels, pores, asymmetry and microenvironment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aeberhard, EE, Gan-Elepano, M and Mead, JF (1981) Metabolism of fatty acids in rat brain membranes. Lipids 16, 705–713

    Article  PubMed  CAS  Google Scholar 

  • Asimakis, GK and Sordahl, LA (1 977) Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria., Arch. Biochem. Biophys. 179, 200-210.

    Google Scholar 

  • Baker, RR and Thompson, W (1 973) Selective acylation of 1-acylglycerophosphorylino sitol by rat brain microsomes., Comparison with lacylglycerophosphorylcholine., J. Biol. Chem. 248, 7060–7065.

    Google Scholar 

  • Baker, RR, Dowdall, MJ and Whittaker, VP (1975) The involvement of lysophosphoglyc- erides in neurotransmitter release: composition and turnover of phospholipids of synaptic vesicles of guinea pig cerebral cortex and Torpedo electric organ and the effect of stimulation. Brain Res. 100, 629–644.

    Article  PubMed  CAS  Google Scholar 

  • Bazan, NG (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim. Biophys. Acta 218, 1–10.

    PubMed  CAS  Google Scholar 

  • Bazan, NG (1976) Free arachidonic acid and other lipids in the nervous system during early ischemia and after electroshock. In: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems ( Porcellati, G, Amaducci, L and Galli, C, eds.) pp. 317–335, Plenum Press, New York.

    Google Scholar 

  • Asimakis, GK and Sordahl, LA (1 977) Effects of atractyloside and palmitoyl coenzyme A on calcium transport in cardiac mitochondria., Arch. Biochem. Biophys. 179, 200–210.

    Google Scholar 

  • Bjerve, KS, Daae, LNW and Bremer, J (1974) The selective loss of lysophospholipids in some commonly used lipid-extraction procedures., Anal. Biochem. 58, 238–245.

    Article  PubMed  CAS  Google Scholar 

  • Blaustein, MP, Johnson, EM and Needleman, P (1972) Calcium dependent norepinephrine release from presynaptic nerve endings in vitro, Proc. Natl. Acad. Sci. 69, 2237–2240.

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH and Fishman, RA (1 978) Brain edema: induction in cortical slices by polyunsaturated fatty acids. Science 201, 358–360.

    Google Scholar 

  • Chan, PH and Fishman, RA (1980) Transient formation of superoxide radicals in polyunsaturated fatty acids-induced brain swelling., J. Neurochem. 35, 1004–1007.

    Article  PubMed  CAS  Google Scholar 

  • Chan, PH and Fishman, RA (1 982) Alterations of membrane integrity and cellular constituents by arachidonic acid in neuroblastoma and glioma cells., Brain Res. 248, 151–157.

    Google Scholar 

  • Chan, PH and Fishman, RA (1983) Phospholipid degradation and the early release of polyunsaturated fatty acids in the evolution of brain edema. 5th Int. Symp. on Brain Edema, (in press)

    Google Scholar 

  • Cooper, MF and Webster, GR (1 970) The differentiation of phospholipase A1 and A2 in rat and human nervous tissues. J. Neurochem. 17, 1543–1554.

    Google Scholar 

  • Cooper, MF and Webster, GR (1 972) On the pho spholipase A2 activity of human cerebral cortex. J. Neurochem. 19, 333–340.

    Google Scholar 

  • Corbin, DR and Sun, GY (1 978) Characteriza-tion of the enzymic transfer of arachidonoyl groups to 1-acyl-phosphoglycerides in mouse synaptosome fraction., J. Neurochem. 30, 77–82.

    Google Scholar 

  • DeLorenzo, RJ (1982) Calmodulin in neurotrans-mitter release and synaptic function. Fed. Proc. 41, 2265–2272

    Google Scholar 

  • De Medio, GE, Goracci, G, Horrocks, LA, Lazarewicz, JW, Mazzari, S, Porcellati, G, Strosznajder, J and Trovarelli, G (1980) The effect of transient ischemia on fatty acid and lipid metabolism in the gerbil brain. Ital. J. Biochem. 29, 412–432.

    PubMed  Google Scholar 

  • Foster, RE, Kocsis, JD, Malenka, RC and Waxman, SG (1980) Lysophosphatidylcholine-induced focal demyelination in the rabbit corpus callosum., J. Neurol. Sci. 48, 221–231

    Article  PubMed  CAS  Google Scholar 

  • Cooper, MF and Webster, GR (1 972) On the pho spholipase A2 activity of human cerebral cortex. J. Neurochem. 19, 333–340.

    Google Scholar 

  • Gan-Elepano, M, Aeberhard, E and Mead, JF (1981) On the mechanisms of fatty acid transformations in membranes. Lipids 16, 790–795.

    Article  PubMed  CAS  Google Scholar 

  • Gray, NCc and Strickland, KP (1 982) On the specificity of a phospholipase A2 purified from the 106 ,000 x g pellet of bovine brain. Lipids 17, 91–96.

    Google Scholar 

  • Hallett, DW (1981) A sensitive enzymic assay for lysolecithin. Thesis, University of Missouri-Columbia

    Google Scholar 

  • Houslay, MD and Palmer, RW (1979) Lysophos-phatidylcholines can modulate the activity of the glucagon-stimulated adenylated cyclase from rat liver plasma membranes. Biochem. J. 178, 217–221.

    PubMed  CAS  Google Scholar 

  • Howell, JI and Lucy, JA (1969) Cell fusion induced by lysolecithin., FEBS Lett. 4, 147–150

    Article  PubMed  CAS  Google Scholar 

  • Katz, AM, Messineo, F, Miceli, J and Nash-Adler, PA (1981) Low concentrations of fatty acids can inhibit calcium efflux from sarcoplasmic reticulum vesicles. Life Sci. 28, 1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Lazarewicz, J, Leu, V, Sun, GY and Sun, AY (1983) Arachidonic acid release from K+- evoked depolarization of brain synaptosomes. Neurochem. Int. (in press)

    Google Scholar 

  • Leibovitz-BenGershon, Z, Kobiler, H and Gatt, S (1972) Lysophospholipases of rat brain. J. Biol. Chem. 247, 6840–6817

    PubMed  CAS  Google Scholar 

  • Majewska, MD, Manning, R and Sun, GY (1981) Effects of postdecapitative ischemia on arachidonate release from brain synaptosomes. Neurochem. Res. 6, 567–576.

    Article  PubMed  CAS  Google Scholar 

  • Majewska, MD and Sun, GY (1 982) Activation of arachidonoyl-phosphatidylinositol and phos-phatidylcholine turnover by K+-evoked stimulation of brain synaptosomes., Neurochem. Int. 4, 427–433.

    Google Scholar 

  • Moskowitz, N, Schook, W and Puszkin, S (1982) Interaction of brain synaptic vesicles induced by endogenous Ca2+-dependent phospholipase A2. Science 216, 305–307

    Article  PubMed  CAS  Google Scholar 

  • Mulder, AH, van den Berg, WB and Stoot, JG (1975) Calcium-dependent release of radio-labeled catecholamines and serotonin from rat brain synaptosomes in a superfusion system. Brain Res. 99, 41 9–429

    Google Scholar 

  • Pichard, AL and Cheung, WY (1977) Cyclic 3’:5’-nucleotide phosphodiesterase. Stimulation of bovine brain cytoplasmic enzyme by lysophosphatidylcholine., J. Biol. Chem. 252, 4872–4875.

    PubMed  CAS  Google Scholar 

  • Rhoads, DE, Kaplan, MA, Peterson, NA and Raghupathy, E (1982) Effects of free fatty acids on synaptosomal amino acid uptake systems. J. Neurochem. 38, 1255–1260.

    Article  PubMed  CAS  Google Scholar 

  • Rotman, A (1977) The effect of phospholipase C, phospholipase A2 and neuraminidase on the uptake of [3H]2 norepinephrine and [3H] serotonin by rat brain synaptosomes. J. Neurochem. 28, 1369–1372.

    Article  CAS  Google Scholar 

  • Seisjo, BK, Martin Ingvar, and Westerberg, E (1982) The influence of bicuculline-induced seizures on free fatty acid concentrations in cerebral cortex, hippocampus, and cerebellum. J. Neurochem. 39, 796–802

    Article  Google Scholar 

  • Serhan, CN, Fridovich, J, Goetzl, EJ, Dunham, PB and Weissmann, G (1982) Leukotriene B2 and phosphatidic acid are calcium ionophores. Studies employing arsenazo III in liposomes. J. Biol. Chem. 257, 4746–4752

    PubMed  CAS  Google Scholar 

  • Shier, WT (1977) Inhibition of acyl-CoA: lysolecithin acyltransferases by local anesthetics, detergents and inhibitors of cyclic nucleotide phosphodiesterases., Biochem. Biophys. Res. Commun. 75, 186–193.

    Article  PubMed  CAS  Google Scholar 

  • Shier, WT, Baldwin, JH, Nilsen-Hamilton, M, Hamilton, RT and Thanassi, NM (1976) Regulation of guanylate and adenylate cyclase activities by lysolecithin., Proc. Natl. Acad. Sci. USA 73, 1586–1590.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, GK, Nemoto, EM and Alexander, HL (1981) Brain free fatty acid changes during global ischemia with barbiturate anesthesia and hypothermia., Brit. J. Anaesthesia 53, 304.

    Google Scholar 

  • Singer, SJ and Nicolson, GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175, 720–724.

    Article  PubMed  CAS  Google Scholar 

  • Strosznjder, J, Tang, W, Manning, R, Lin, AYT, MacQuarrie, R and Sun, GY (1981) Metabolism of oleoyl-CoA in rat brain synaptosomes: Effects of calcium and post-decapitative ischemia. Neurochem. Res. 6, 1231–1240

    Article  Google Scholar 

  • Sun, AY and Sun, GY (1976) Functional roles of phospholipids of synaptosomal membrane., In: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous Systems ( Porcellati, G, Amaducci, L and Galli, C, eds.) pp. 169–197 ) Plenum Press, New York.

    Google Scholar 

  • Sun, GY (1973) The turnover of phosphoglycerides in the subcellular fractions of mouse brain. A study using [14C] -oleic acid as precursor., J. Neurochem. 21, 1083–1092.

    Article  PubMed  CAS  Google Scholar 

  • Sun, GY (1982) Metabolic turnover of arachidonoyl groups in brain membrane phosphoglycerides. In: Phospholipid Metabolism in the Nervous System, Metabolism (Horrocks, LA, Ansell, GB, and Porcellati, G, eds.) Vol. 1, PP. 75–89, Raven Press, New York

    Google Scholar 

  • Sun, GY and Horrocks, LA (1973) The metabolism of palmitic acid in the subcellular fractions of mouse brain. J. Lipid Res. 14, 206–214.

    PubMed  CAS  Google Scholar 

  • Sun, GY and Su, KL (1979) Metabolism of arachidonoyl phosphoglycerides in mouse brain subcellular fractions. J. Neurochem. 32, 1053–1059.

    Article  PubMed  CAS  Google Scholar 

  • Sun, GY, Corbin, DR, Wise, RW and MacQuarrie, R (1979a) Effects of lipid intermediates, lyso-glycerophospholipids and detergents on arachidonate transfer to 1- acyl-glycerophospholipids by brain synapto-somes. Int. J. Biochem. 10, 557–563.

    Article  PubMed  CAS  Google Scholar 

  • Sun, GY, Su, KL, Der, OM and Tang, W (1979b) Enzymic regulation of arachidonate metabolism in brain membrane phosphoglyc-erides. Lipids 14, 229–235

    Article  PubMed  CAS  Google Scholar 

  • Sun, GY, Tang, W and Sun, AY (1 982) Changes in free fatty acids and diacylglycerols in rat brain due to acute ethanol administration., Fed. Proc. 41, 4270

    Google Scholar 

  • Sundler, R, Duzgunes, N and Papahadjopoulos, D (1981) Control of membrane fusion by phospholipid head groups. II. The role of phosphatidylethanolamine in mixtures with phosphatidate and phosphatidylinositol. Biochim. Biophys. Acta 649, 751–758.

    Article  PubMed  CAS  Google Scholar 

  • Tang, W and Sun, GY (1982) Factors affecting the free fatty acids in rat brain cortex. Neurochem. Int. 4, 269–273.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bosch, H (1980) Intracellular phospholipase A. Biochim. Biophys. Acta 604, 191–246.

    Google Scholar 

  • Van den Bosch, H and van den Besselaar, AMHP (1978) Intracellular formation and removal of lysophospholipids. In: Advances in Prosta-glandin and Thromboxane Research ( Galli, C et al., eds.) Vol. 3, pp. 69–75, Raven Press, New York

    Google Scholar 

  • Vignais, PV, Lauquin, GJM and Vignais, PM (1976) In: Mitochondria. (Packer, L and Gomez-Puyon, A, eds.) pp. 109–125, Academic Press, New York

    Google Scholar 

  • Webster, GR (1973) Phospholipase A activites in normal and sectioned rat sciatic nerve., J. Neurochem. 21, 873–876.

    Article  PubMed  CAS  Google Scholar 

  • Webster, GR and Alpern, RJ (1964) Studies on the acylation of lysolecithin by rat brain., Biochem. J. 90, 35–41.

    PubMed  CAS  Google Scholar 

  • Webster, GR and Cooper, M. (1968) On the site of action of phosphatide acylhydrolase activity of rat brain homogenates on lecithin. J. Neurochem. 15, 795–802

    Article  PubMed  CAS  Google Scholar 

  • Weltzien, HU (1979) Cytolytic and membrane-perturbing properties of lysophosphatidylcholine., Biochim.Biophys. Acta 559, 259–287

    Google Scholar 

  • Woelk, H, Kanig, K and Peiler-Ichikawa, K (1974a) Phospholipid metabolism in experimental allergic encephalomyelitis: activity of mitochondrial phospholipase A2 of rat brain towards specifically labelled 1, 2-diacyl-1-alk-1 ’-enyl-2-acyl- and 1-alkyl-2- aoyl-sn-glycer o-3-phosphorylcholine., J. Neurochem. 23, 745–750.

    Article  PubMed  CAS  Google Scholar 

  • Woelk, H, Peiler-Ichikawa, K, Binaglia, L, Goracci, G and Porcellati, G (1974b) Distribution and properties of phospholipases A1 and A2 in synaptosomes and subsynaptosomal fractions of rat brain. Hoppe Seyler’s Z. Physiol. Chem. 355, 1535–1542

    Article  CAS  Google Scholar 

  • Woelk, H, Ariente, G, Gaiti, A., Kanig, K and Porcellati, G (1981) Action of phospholipase A2 of rabbit neuronal and glial cells on 1, 2-diacyl-, 2-acy1-1-alk-1eny 1-, and 2-acyl-1- alky1-glycerophosphatides. Neurochem. Res. 6, 23–32

    Article  PubMed  CAS  Google Scholar 

  • Wojtezak, L (1976) Effect of long-chain fatty acid and acyl-CoA on mitochondrial permeability, transport, and energy coupling process. J. Bioenerg. Biomemb. 8, 293–311.

    Google Scholar 

  • Wood, JM, Bush, B, Pitts, BJR and Schwartz, A (1977) Inhibition of bovine heart Na+,K+- ATPase by palmitylcarnitine and palmityl-CoA. Biochem. Biophys. Res. Commun. 74, 677–684.

    Article  PubMed  CAS  Google Scholar 

  • Zimmerberg, J, Cohen, FS and Finkelstein, A (1980) Micromolar Ca++ stimulates fusion of lipid vesicles with planar bilayers containing a calciumbinding protein. Science 210, 906–908.

    Article  PubMed  CAS  Google Scholar 

  • Zwiller, J, Cresielski-Treska, J and Mandel, P (1976) Effect of lysolecithin on guanylate and adenylate cyclase activities in neuroblastoma cells in culture. FEBS Lett. 69, 286–290

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Grace Y. Sun Nicolas Bazan Jang-Yen Wu Guiseppe Porcellati Albert Y. Sun

Rights and permissions

Reprints and permissions

Copyright information

© 1983 The Humana Press Inc.

About this chapter

Cite this chapter

Sun, G.Y., Tang, W., Majewska, M.D., Hallett, D.W., Foudin, L., Huang, S. (1983). Involvement of Phospholipid Metabolites in Neuronal Membrane Functions. In: Sun, G.Y., Bazan, N., Wu, JY., Porcellati, G., Sun, A.Y. (eds) Neural Membranes. Experimental and Clinical Neuroscience. Humana Press. https://doi.org/10.1007/978-1-4612-5636-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5636-6_3

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-5638-0

  • Online ISBN: 978-1-4612-5636-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics