Skip to main content

Convergence of Stochastic Approximation Algorithms with Non-Additive Dependent Disturbances and Applications

  • Conference paper
Mathematical Learning Models — Theory and Algorithms

Part of the book series: Lecture Notes in Statistics ((LNS,volume 20))

Abstract

This paper is concerned with the strong convergence of recursive estimators which are generalizations of the Robbins-Monro (1951) stochastic approximation procedure. The Robbins-Monro procedure and its generalizations have been investigated in mаnу contexts, for example recursive nonlinear regression (Albert and Gardner, 1967), recursive maximum likelihood estimation (Fabian, 1978), robust estimation of parameters for autoregressive process (Campbell, 1982), robust estimation of a location parameter (Martin and Masreliez, 1975 and Holst, 1980, 1982), control of physical processes (Comer, 1964 and Ruppert, 1979, 1981), and system identification (Kushner and Clark, 1978, section 2.6). In this paper, we present a rather general convergence theorem which allows the disturbances to be dependent and enter in a non-additive fashion. As examples, the theorem is applied to the nonlinear regression estimator of Albert and Gardner (1967), and to the author’s (Ruppert 1979, 1981) Robbins-Monro type procedures for use where the root of the unknown regression function varies with time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, A.E. and Gardner, L.A., Jr. (1967). Stochastic Approximation and Nonlinear Regression. The M.I.T. Press, Cambridge, Mass.

    MATH  Google Scholar 

  • Campbell, Katherine. (1982). Recursive computation of M-estimates for the parameters of a finite autoregressive process. Ann. Statist., 10. 442–453.

    Article  MathSciNet  MATH  Google Scholar 

  • Comer, John P., Jr. (1964). Some stochastic approximation procedures for use in process control. Ann. Math. Statist.,35 1137–1146.

    Article  MathSciNet  Google Scholar 

  • Derman, C. and Sacks, J. (1959). On Dvoretzky’s stochastic approximation theorem. Ann. Math. Statist., 30 601–605.

    Article  MathSciNet  MATH  Google Scholar 

  • Fabian, V. (1978). On asymptotically efficient recursive estimation. Ann. Statist.,6 854–867.

    Article  MathSciNet  MATH  Google Scholar 

  • Holst, Ulla (1980). Convergence of a recursive stochastic algorithm with m-dependent observations. Scand. J. Statist. 7 207–215.

    MathSciNet  MATH  Google Scholar 

  • Holst, Ulla (1982). Convergence of a recursive stochastic algorithm with strongly regular observations. Technical Report. Department of Mathematical Statistics. University of Lund and Lund Institute of Technology.

    Google Scholar 

  • Kushner, H.J. and Clark, D.S. (1978). Stochastic Approximation Methods for Constrained and Unconstrained Systems. Springer-Verlag. New York. 260 p.

    Google Scholar 

  • Martin, R.D. and Masreliez, C.J. (1975). Robust estimation via stochastic approximation. IEEE Trans. Inform. Theory IT-21 263–271.

    Google Scholar 

  • McLeish, D.L. (1975). A maximal inequality and dependent strong laws. Ann. Prob. 3 829–839.

    Article  MathSciNet  MATH  Google Scholar 

  • Parthasarathy, K.R. (1967). Probability Measures on Metric Spaces. Academic Press, New York.

    MATH  Google Scholar 

  • Pham, Ruan D. and Tran, Lanh T. (1980). The strong mixing property of the autoregressive moving average time series model. Technical Report, Department of Mathematics, Indiana University.

    Google Scholar 

  • Ranga, R.R. (1962). Relations between weak and uniform convergence of measures with applications. Ann. Math. Statist. 33 659–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Robbins, H. and Monro, S, (1951). A stochastic approximation method. Ann. Math. Statist. 22 400–407.

    Article  MathSciNet  MATH  Google Scholar 

  • Robbins, H. and Siegmund, D. (1971). A Convergence Theorem for Nonnegative Almost Supermartingales and Some Applications. In Optimizing Methods in Statistics (J.S. Rustagi, ed.) 233–257. Academic Press, New York.

    Google Scholar 

  • Ruppert, D. (1979). A new dynamic stochastic approximation procedure. Ann. Statist. 7 1179–1195.

    Article  MathSciNet  MATH  Google Scholar 

  • Ruppert, D. (1981). Stochastic approximation of an implicitly defined function. Ann. Statist. 9 555–566.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this paper

Cite this paper

Ruppert, D. (1983). Convergence of Stochastic Approximation Algorithms with Non-Additive Dependent Disturbances and Applications. In: Herkenrath, U., Kalin, D., Vogel, W. (eds) Mathematical Learning Models — Theory and Algorithms. Lecture Notes in Statistics, vol 20. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5612-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5612-0_20

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-90913-4

  • Online ISBN: 978-1-4612-5612-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics