Skip to main content

Animal Models in the Study of Hepatobiliary Radiotracers

  • Chapter
Animal Models in Radiotracer Design

Abstract

The last decade has been a time of active and fruitful interest in the development of hepatobiliary radiopharmaceuticals. In order to compare potential radiopharmaceuticals, define their biological behavior, and obtain data that would indicate behavior under clinical conditions, a variety of animal species and even isolated hepatocytes have been used. This chapter reviews the use of these animal models with respect to the type of information to be gained, advantages and disadvantages of the species under study, and correlation of data from one species to another as well as to the ultimate species, man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E. F. (1949). Quantitative relations in the physiological constitutions of mammals. Science 109:579–585.

    Article  PubMed  CAS  Google Scholar 

  • Alpert, S., Mosher, M., and Shanske, A. (1969). Multiplicity of hepatic excretory mechanisms for organic anions. J. Gen. Physiol. 53:288–247.

    Article  Google Scholar 

  • Altman, P. L., and Dittmer, D. S. (1972a). Biology Data Book. Bethesda: Federation of American Societies for Experimental Biology, pp. 1703–1706.

    Google Scholar 

  • Altman, P. L., and Dittmer, D. S. (1972b). Biology Data Book. Bethesda: Federation of American Societies for Experimental Biology, pp. 1841–1849.

    Google Scholar 

  • Arias, I. M. (1972). Transfer of bilirubin from blood to bile. Sem. Hematol. 9:55–70.

    CAS  Google Scholar 

  • Arias, I. M., Fleishner, G., Kirsch, R., Mishkin, S., and Gatmaitan, F. (1976). Glutathione: Metabolism and Function, Arias, I. M., Jakoby, W. B., eds. New York: Raven Press, pp. 175.

    Google Scholar 

  • Arias, I. M., Gartner, L. M., Cohen, M., Ben-Ezzer, J., and Levi, A. J. (1969). Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Am. J. Med. 47:395–409.

    Article  PubMed  CAS  Google Scholar 

  • Aziz, F. T. A., Hirom, P. C., Millburn, P., Smith, R. L., and Williams, R. T. (1971). The biliary excretion of anions of molecular weight 300–800 in the rat, guinea pig and rabbit. Biochem. J. 125:25–26P.

    Google Scholar 

  • Baker, R. J., Bellen, J. C., and Ronai, P. M. (1975). Technetium 99mTc-pyridoxyli- deneglutamate: A new hepatobiliary radiopharmaceutical. 1. Experimental aspects. J. Nucl. Med. 16:720–727.

    PubMed  CAS  Google Scholar 

  • Benet, L. Z., and Galeazzi, R. L. (1979). Noncompartmental determination of the steady-state volume of distribution, J. Pharm. Sci. 68:1071–1074.

    Article  PubMed  CAS  Google Scholar 

  • Benet, L. Z., and Ronfeld, R. A. (1969). Volume terms in pharmacokinetics, J. Pharm. Sci. 58:639–641.

    Article  PubMed  CAS  Google Scholar 

  • Berry, M. N., and Friend, D. S.: (1969). High yield preparation of isolated rat liver parenchymal cells. J. Cell. Biol. 43:405–520.

    Article  Google Scholar 

  • Billing, B. H., Williams, R., and Richards, T. G. (1964). Defects in hepatic transport of bilirubin in congenital hyperbilirubinemia: An analysis of plasma bilirubin disappearance curves. Clin. Sci. 27:245–257.

    PubMed  CAS  Google Scholar 

  • Black, M., and Billing, B. H. (1969). Hepatic bilirubin UDP-glucuronyl transferase activity in liver disease and Gilbert’s syndrome. N. Engl. J. Med. 280:1266–1271.

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum, H. (1980). Interspecies variation in liver weight, hepatic blood flow, and antipyrine intrinsic clearance: Extrapolation of data to enzodiazepines and phenytoin, J. Pharmacol. Biopharmacol. 8:165–176.

    Article  CAS  Google Scholar 

  • Chervu, L. R., Nunn, A. D., and Loberg, M. D. (1982). Radiopharmaceuticals for hepatobiliary imaging. Sem. Nucl. Med. 12:5–17.

    Article  CAS  Google Scholar 

  • Chervu, L. R., Robbins, E. B., Huq, S. S., and Blaufox, M. D. (1979). In vivo and in vitro studies of Tc-99m HIDA uptake. J. Nucl. Med. 20:655.

    Google Scholar 

  • Chiotellis, E., and Varvarigou, A. (1980). 99mTc-labeled N-substituted carbamoyl iminodiacetates: Relationship between structure and biodistribution. Int. J. Nucl. Med. Biol. 7:1–7.

    Google Scholar 

  • Cooper, B., Eakins, M. N., and Slater, T. F. (1976). The effect of various anesthetic techniques on the flow rate, constituents and enzyme composition of rat bile. Biochem. Pharmacol. 25:1711–1718.

    Article  PubMed  CAS  Google Scholar 

  • Dhumeaux, D., Berthelot, P., and Javitt, N. B. (1974). Dibromosulfophthalein (DBSP) estimation of hepatic transport function in man. Eur. J. Clin. Invest. 4:181–185.

    PubMed  CAS  Google Scholar 

  • Dubin, I. N., and Johnson, F. B. (1954). Chronic idiopathic jaundice with unidentified pigment in liver cells. Medicine 33:155–197.

    Article  PubMed  CAS  Google Scholar 

  • Fevery, J., Leroy, P., Van De Vijver, M., and Heirwegh, K. P. M. (1972). Enzymic transfer of glucose and xylose from uridine diphosphate glucose and uridine diphosphate xylose to bilirubin by untreated and digitonin-activated preparations from rat liver. Biochem. J. 129:619–633.

    PubMed  CAS  Google Scholar 

  • Fischer, E., Barth, A., Varga, F., and Klinger, W. (1979). Age dependence of hepatic transport in control and phenobarbital-pretreated rats. Life Sci. 24:557–562.

    Article  PubMed  CAS  Google Scholar 

  • Fritzberg, A. R. (1981). The evaluation of hepatocyte function with radiotracers. In Studies of Cellular Function Using Radiotracers. M. W. Billinghurst, ed., Boca Raton, Fla.: CRC Press, pp. 73–92.

    Google Scholar 

  • Fritzberg, A. R., Bloedow, D. C., Klingensmith, W. C., and Whitney, W. P. (1982a). Comparative study of 99mTc-hepatobiliary agents based on naphthalene and similar ring systems. Int. J. Nucl. Med. Biol. 9:1–11.

    Article  PubMed  CAS  Google Scholar 

  • Fritzberg, A. R., and Klingensmith, W. C. (1982). Teaching editorial: Quest for the perfect hepatobiliary radiopharmaceutical. J. Nucl. Med. 23:543–546.

    PubMed  CAS  Google Scholar 

  • Fritzberg, A. R., Klingensmith III, W. C., Whitney, W. P., and Kuni, C. C. (1981). Chemical and biological studies of Tc-99mN, N’-bis(mercaptoacetamido)ethylenediamine: A potential replacement for 1–131 iodohippurate. J. Nucl. Med. 22:258–263.

    PubMed  CAS  Google Scholar 

  • Fritzberg, A. R., Kuni, C.C., Klingensmith, W. C., Stevens, J., and Whitney, W. P. (1982b). Synthesis and biological evaluation of Tc-99m N, N’-bis(mercaptoace- tyl)-2,3-diaminopropanoate: A potential replacement for [-131]o-iodohippurate. J. Nucl. Med. 23:592–598.

    PubMed  CAS  Google Scholar 

  • Fritzberg, A. R., and Reichen, J. (1983). Direct measurement of extraction efficiencies and mean transit times of hepatobiliary agents in the perfused rat liver. J. Nucl. Med., 24:126.

    Google Scholar 

  • Fritzberg, A. R., Whitney, W. P., and Klingensmith III, W. C. (1979). Hepatobiliary transport mechanism of Tc-99m diethyl-IDA. In Radiopharmaceuticals II, Sodd, V. J., Allen, D. R., Hoogland, D. R., Ice, R. I., eds. New York: Society of Nuclear Medicine, pp. 566–586.

    Google Scholar 

  • Frizzell, R. A., and Heintze, K. (1980). Transport functions of the gallbladder. In Liver and Biliary Tract Physiology I, Int. Rev. Physiol., Vol. 21, Javitt, N. B., ed. Baltimore: University Park Press, pp. 221–247.

    Google Scholar 

  • Gelius, L., Skretting, A., and Aas, M. (1981). A mathematical model for the liver uptake and excretion of 99mTc-diethyl-IDA. Eur. J. Nucl. Med. 6:139–142.

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi, M., and McNamara, P. J. (1978). Apparent volumes of distribution and drug binding to plasma proteins and tissues. Eur. J. Clin. Pharmacol. 13:373–378.

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi, M., and Perrier, D. (1975a). Pharmacokinetics. New York: Marcel Dekker, pp. 175–187.

    Google Scholar 

  • Gibaldi, M., and Perrier, D. (1975b). Pharmacokinetics. New York: Marcel Dekker, p. 315.

    Google Scholar 

  • Gillette, J. R. (1971). Factors affecting drug metabolism. Ann. N.Y. Acad. Sci. 179:43–66.

    Article  PubMed  CAS  Google Scholar 

  • Goresky, C. A. (1980). Uptake in the liver. The nature of the process. In Liver and Biliary Tract Physiology I, Int. Rev. Physiol., Vol. 21, Javitt, N. B., ed. Baltimore: University Park Press, pp. 65–101.

    Google Scholar 

  • Goresky, C. A., and Kleiger, S. W. (1969). The relation between bile flow and transport maximum for bilirubin in the dog. Gasteroenterology 56:398.

    Google Scholar 

  • Habig, W., Pabst, M., Fleishner, G., Gatmaitan, F., Arias, I. M., and Jakoby, W. (1974). The identity of glutathione transferase B with ligandin, a major binding protein of the liver. Proc. Natl. Acad. Sci. USA 71:3879–3882.

    Article  PubMed  CAS  Google Scholar 

  • Hanks, J. B., Meyers, W. C., Willman, C. L., Hill, R. C., and Jones, R. S. (1980). The effect of cell-free and erythrocyte-containing perfusion in rat livers. J. Surg. Res. 24:149–160.

    Article  Google Scholar 

  • Harvey, E., Loberg, M., Ryan, J., Sikorski, S., Faith, W., and Cooper, M. (1979). Hepatic clearance mechanism of Tc-99m-HIDA and its effect on quantitation of hepatobiliary function. J. Nucl. Med. 20:310–313.

    PubMed  CAS  Google Scholar 

  • Henrikson, J. H., and Winkler, K. (1978). Pharmacokinetics of 99mTc-diethyl-IDA in man. In Proceedings of Symposium on Hepatobiliary Scintigraphy by Means of IDA Derivatives. Biersack, H. J., Maxsted, J., eds. Darmstadt: G.I.T. Verlag E. Giebeler, pp. 55–70.

    Google Scholar 

  • Herz, R., Cueni, B., Bircher, J., and Paumgartner, G. (1973). The excretory capacity of the isolated perfused rat liver. Naunyn Schmiedebergs Arch. Pharmacol. 277:297–304.

    Article  PubMed  CAS  Google Scholar 

  • Hirom, P. C., Millburn, P., and Smith, R. L. (1976). Bile and urine as complementary pathways for the excretion of foreign compounds. Xenobiotica 6:55–64.

    Article  PubMed  CAS  Google Scholar 

  • Iga, T., and Klaassen, C. D. (1982). Hepatic extraction of bile acids in rats. Biochem. Pharmacol. 31:205–209.

    CAS  Google Scholar 

  • Jansholt, A.-L., Vera, D. R., Krohn, K. A., and Stadalnik, R. C. (1979). In vivo kinetics of hepatobiliary agents in jaundiced animals. In Radiopharmaceuticals II, Sodd, V. J., Allen, D. R., Hoogland, D. R., Ice, R. D., eds., New York: Society of Nuclear Medicine, pp. 555–564.

    Google Scholar 

  • Jones, A. B., Davison, A., LaTegola, M. R., Brodack, J. W., Orvig, C., Sohn, M., Toothaker, A. K., Lock, C. J. L., Franklin, K. J., Costello, C. E., Carr, S. A., Biemann, K., and Kaplan, M. L. (1982). Chemical and in vivo studies of the anion oxo N. N.’-ethylenebis(2-mercaptoacetimido)]technetate(V). J. Nucl. Med. 23:801–809.

    PubMed  CAS  Google Scholar 

  • Kato-Azuma, M. (1981). Identification of a mixed ligand complex of technetium-99m: A chromatographic approach to the chemical structure of carrier free tech- netium-99m (Sn) pyridoxylideneaminate. Int. J. Appl. Rad. Isot. 32:187–189.

    Article  CAS  Google Scholar 

  • Kato-Azuma, M. (1982). Tc-99m(Sn)-N-pyridoxylaminates: A new series of hepatobiliary imaging agents. J. Nucl. Med. 23:517–524.

    PubMed  CAS  Google Scholar 

  • Kato, M., and Hazue, M. (1978). Tc-99m-(Sn)pyridoxylidene aminates: Preparation and biological evaluation. J. Nucl. Med. 19:397–406.

    PubMed  CAS  Google Scholar 

  • Klaassen, C. D. (1975). Biliary excretion of xenobiotics. CRC Crit. Rev. Toxicol. 4:1–30.

    Article  PubMed  CAS  Google Scholar 

  • Klaassen, C. D., and Plaa, G. L. (1967). Species variation in metabolism, storage, and excretion of sulfobromophthalein. Am. J. Physiol. 213:1322–1326.

    PubMed  CAS  Google Scholar 

  • Klingensmith, W. C., Fritzberg, A. R., Spitzer, V. M., Kuni, C. C., and Shanahan, W. S. M. (1981). Clinical comparison of diisopropyl-IDA Tc-99m and diethyl-IDA Tc-99m for evaluation of the hepatobiliary system. Radiology 140:791–795.

    PubMed  Google Scholar 

  • Klingensmith, W., Fritzberg, A., Spitzer, V., Kuni, C., Williamson, M., Gerhold, J., Nunn, A., Loberg, M., and Beisicki, T. (1982). Clinical evaluation of Tc-99m- mebrofenin and comparison with Tc-disofenin for radionuclide hepatobiliary imaging. Proceedings of World Fed. Nucl. Med. Biol. Mtng., Paris, pp. 1596–1598.

    Google Scholar 

  • Klingensmith, W. C., Gerhold, J. P., Fritzberg, A. R., Spitzer, V. M., Kuni, C. C., Singer, C. J., and Weil, R. (1982). Clinical comparison of Tc-99m-N. N’ -bis(mer- captoacetamido)ethylenediamine and I-131-hippuran for evaluation of renal tubular function. J. Nucl. Med. 23:377–380.

    PubMed  Google Scholar 

  • Klingensmith, W. C., Whitney, W. P., Spitzer, V. M., Klintmalm, G. B. G., Koep, L. M., and Kuni, C. C. (1981). Effect of complete biliary-tract obstruction on serial hepatobiliary imaging in an experimental model. J. Nucl. Med. 22:866–868.

    PubMed  Google Scholar 

  • Kurz, H., Trunk, H., and Weitz, B. (1977). Evaluation of methods to determine protein-binding of drugs. Arzneim-Forsch 27:1373–1380.

    CAS  Google Scholar 

  • Levi, A. T., Gatmaitan, Z., and Arias, I. M. (1969). Two hepatic cytoplasmic protein fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J. Clin. Invest. 48:2156–2160.

    Article  PubMed  CAS  Google Scholar 

  • Levy, M. L., Palazzi, H. M., Nardi, G. L., and Bunker, J. P. (1961). Hepatic blood flow variations during surgical anesthesia in man measured by radioactive colloid. Surg. Gyn. Obstet. 112:289–294.

    CAS  Google Scholar 

  • Litwack, G., Ketterer, B., and Arias, I. M. (1971). Ligandin, An abundant liver protein which binds steroids, bilirubin, carcinogens, and a number of exogenous anions. Nature (Lond.) 234:466–467.

    Article  CAS  Google Scholar 

  • Loberg, M. D., Cooper, M., Harvey, E., Callery, P., and Faith, W. (1976). Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid. J. Nucl. Med. 17:633–638.

    PubMed  CAS  Google Scholar 

  • Loberg, M. D., Nunn, A. D., and Porter, D. W. (1981). Development of hepatobiliary imaging agents. In Nuclear Medicine Annual 1981, Freeman, L. M., and Weissmann, H. S., eds., New York: Raven Press, pp. 1–33.

    Google Scholar 

  • Loberg, M. D., and Porter, D. W. (1979). Review and current status of hepatobiliary agents. In Radiopharmaceuticals II., Eds., Sodd, V. J., Allen, D. R., Hoogland, D. R., and Ice, R. D. New York: Society of Nuclear Medicine, pp. 555–564.

    Google Scholar 

  • Mia, A. S., Gronwald, R. R., and Cornelius, C. E. (1920). Bilirubin-14C turnover studies in normal and mutant Southdown sheep with congenital hyperbilirubinemia. Proc. Soc. Exp. Biol. Med. 133:955–959.

    Google Scholar 

  • Miller, L. L. (1973). Technique of isolated rat liver perfusion. In Isolated Liver Perfusion and Its Applications. Bartosek, I., Guaitani, A., Miller, L. L., eds. New York: Raven Press, pp. 11–52.

    Google Scholar 

  • McLean, E. K., McLean, A. E. M., and Sutton, P. M. (1969). Instant cirrhosis: An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone. Br. J. Exp. Pathol. 50:502–506.

    PubMed  CAS  Google Scholar 

  • Nunn, A. D., Loberg, M. D., Conley, R. A., and Schram, E. (1981). The development of a new cholescintigraphic agent, Tc-SQ 26,962, using a structure-distribution relationship approach. J. Nucl. Med. 22:P51.

    Google Scholar 

  • O’Maille, E. R. L., Richards, T. G., and Short, A. H. (1966). Factors determining the maximal rate of organic anion secretion by the liver and further evidence on the hepatic site of action of the hormone secretin. J. Physiol. (Lond) 186:424–438.

    Google Scholar 

  • Paterson, J. Y. F., and Harrisonn, F. A. (1972). The splanchnic and hepatic uptake of Cortisol in conscious and anesthetized sheep. J. Endocrinol. 55:335–350.

    Article  PubMed  CAS  Google Scholar 

  • Pries, J. M., Staples, A. B., and Hansen, R. F. (1981). The effect of hepatic blood flow on taurocholate extraction by the isolated perfused rat liver. J. Lab. Clin. Med. 97:412–417.

    PubMed  CAS  Google Scholar 

  • Raymond, G. D. (1966). Gastroenterology 50:862–863.

    Google Scholar 

  • Reichen, J., and Paumgartner, G. (1976). Uptake of bile acids by perfused rat liver. Am. J. Physiol. 231:734–742.

    PubMed  CAS  Google Scholar 

  • Reichen, J., and Paumgartner, G. (1980). Excretory function of the liver. In Liver and Biliary Tract Physiology I, Int. Rev. Physiol., Vol. 21, Javitt, N. B., ed., Baltimore: University Park Press, pp. 103–150.

    Google Scholar 

  • Roberts, R. J., Klaassen, C. D., and Plaa, G. L. (1967). Maximum biliary excretion of bilirubin and sulfobromophthalein during anesthesia-induced alteration of rectal temperature. Proc. Soc. Exp. Biol. Med. 125:313–316.

    PubMed  CAS  Google Scholar 

  • Roberts, R. J., and Plaa, G. L. (1967). Alterations of the plasma disappearance and biliary excretion patterns of exogenously administered bilirubin by a-napthyli-sothiocyanate. J. Pharmacol. Exp. Ther. 155:330–336.

    CAS  Google Scholar 

  • Roberts, R. J., and Plaa, G. L. (1967). Effect of phenobarbital on the excretion of an exogenous bilirubin load. Biochem. Pharmacol. 16:827–835.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, R. J., Shriver, S. L., and Plaa, G. L. (1968). Effect of norethandrolone on the biliary excretion of bilirubin in the mouse and rat. Biochem. Pharmacol. 17:1261–1268.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, M., and Tucker, G. (1980). Scientific commentary. Symbols in pharmacokinetics. J. Pharmacokin. Biopharm. 8:497–507.

    Article  CAS  Google Scholar 

  • Ryan, J., Cooper, M., Loberg, M., Harvey, E., Sikorski, S.: Technetium-99m-labeled N-(2,6-dimethylphenylcarbamoylmethyl)iminodiacetic acid (Tc-99m HID A): A new radiopharmaceutical for hepatobiliary imaging studies. J. Nucl. Med. 18:995–1002.

    Google Scholar 

  • Schanker, L. S. (1968). Secretion of organic compounds into bile. In Handbook of Physiology, Vol. 5, Code, C. F., and Heidel, W., eds. Washington, D.C.: American Physiology Society, pp. 2433–2450.

    Google Scholar 

  • Schwenk, M. (1980). Transport systems of isolated hepatocytes. Studies on the transport of biliary compounds. Arch. Toxicol. 44:113–126.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. L. (1973). Species variations in biliary excretion. In The Excretory Function of Bile. London: Chapman and Hall, pp. 76–93.

    Google Scholar 

  • Smith, R. B., Coupal, J., DeLand, F. H., and Triplett, J. W. (1979). Pharmacokinetics of hepatobiliary imaging agents in rats. J. Nucl. Med. 20:45–49.

    PubMed  CAS  Google Scholar 

  • Upson, D. W., Gronwall, R. R., and Cornelius, C. E. (1970). Maximal hepatic excretion of bilirubin in sheep. Proc. Soc. Exp. Biol. Med. 134:9–12.

    PubMed  CAS  Google Scholar 

  • Wagner, J. G. (1976). Scientific commentary: Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of poly exponential equations which have been fitted to the data. J. Pharmacokinet. Biopharm. 4:443–467.

    Article  PubMed  CAS  Google Scholar 

  • Weinbren, K., and Billing, B. H. (1956). Hepatic clearance of bilirubin as an index of cellular function in the regenerating rat liver. Br. J. Exp. Pathol. 37:199–204.

    PubMed  CAS  Google Scholar 

  • Whelan, G., and Combes, B. (1975). Phenobarbital enhanced biliary excretion of administered unconjugated and conjugated sulfobromophthalein in the rat. Biochem. Pharmacol. 24:1283–1286.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, G. R., and Shand, D. G. (1975). A physiological approach to hepatic drug clearance, clinical pharmacology and therapeutics. Clin. Pharmacol. Ther. 18:377–390.

    PubMed  CAS  Google Scholar 

  • Wistow, B. W., Subramanian, G., VanHeertum, R. L., Hendersen, R. W., Gagne, G. M., Hall, R. C., and McAfee, J. G. (1977). An evaluation of 99mTc-labeled hepatobiliary agents. J. Nucl. Med. 18:455–461.

    PubMed  CAS  Google Scholar 

  • Zimmerman, H. J. Hepatotoxicity:The Adverse Effects of Drugs and Other Chemicals on the Liver. New York: Appleton-Century-Crofts, pp. 180–185, 259–276.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Fritzberg, A.R., Bloedow, D.C. (1983). Animal Models in the Study of Hepatobiliary Radiotracers. In: Lambrecht, R.M., Eckelman, W.C. (eds) Animal Models in Radiotracer Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5596-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5596-3_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5598-7

  • Online ISBN: 978-1-4612-5596-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics