Fate of polynuclear aromatic compounds (PNAs) in soil-plant systems

  • R. C. Sims
  • M. R. Overcash
Part of the Residue Reviews book series (RECT, volume 88)


Polycyclic aromatic hydrocarbons (PAH) consist of three or more fused benzene rings in linear, angular, or cluster arrangements. Substitution of carbon in the benzene ring with nitrogen, sulfur, oxygen, or other elements creates heterocyclic aromatic compounds (Blumer 1976). Excluding diphenyl types there are some 70 possible isomers of 4-6 fused rings. Additionally these isomers may be substituted by a variety of substituents (Erskine and Whitehead 1975). The aromatic hydrocarbons and heterocycles, unsubstituted and substituted, are referred to alternatively as polynuclear aromatics (PNAs), polycyclic aromatic compounds (PCAs), and polycyclic organic matter (POM) (NAS 1972, U.S. EPA 1975 b).


Polycyclic Aromatic Hydrocarbon Protocatechuic Acid Polynuclear Aromatic Hydrocarbon Polycyclic Aromatic Compound Polycyclic Aromatic Hydrocar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahokas, J., R. Paakkonen, K. Ronnholm, V. Raunio, and O. Pelkonen: Oxidative metabolism of carcinogens by trout liver resulting in binding and mutagenicity. Hoppe-Seyler’s Z. Physiol. Chem. Bd. 357, S: 1019 (1976).Google Scholar
  2. Akhtar, M. N., D. R. Boyd, N. J. Thompson, D. T. Gibson, V. Mahadevan, and D. M. Jerina: Absolute stereochemistry of the dihydroanthracene-cis-and trans-1,2-diols produced from anthracene by mammals and bacteria. J. Chem. Soc. 1506 (1975).Google Scholar
  3. Alexander, M.: Introduction to soil microbiology, 2nd ed. New York: Wiley (1977).Google Scholar
  4. Ames, B. N., P. Sims, and P. L. Grover: Epoxides of polycyclic hydrocarbons are frameshift mutagens. Science 176, 47 (1972)PubMedGoogle Scholar
  5. Andleman, J. B., and M. J. Suess: The photodecomposition of 3,4-benz-pyrene sorbed on calcium carbonate. In Foust S. J., and J. U. Hunter (eds.): Organic compounds in aquatic environments. New York: Marcel Dekker, pp. 439–468 (1971).Google Scholar
  6. Arffman, E., and B. C. Christensen: Studies on the newt test for carcinogenicity. I. Benzo(a)pyrene, dibenz(a,h)anthracene, and 3-methylcholanthrene. Acta Pathol. Microbiol. Scand. 52, 330 (1961).Google Scholar
  7. Bailey, E. J., and N. Dungal: Polycyclic hydrocarbons in icelandic smoked food. Brit. J. Cancer. 12, 348 (1958).PubMedPubMedCentralGoogle Scholar
  8. Bailey, G. W., and J. L. White: Review of adsorption and desorption of organic pesticides by soil colloids, with implications concerning pesticide bioactivity. J. Agr. Food Chem. 12, 324 (1964).Google Scholar
  9. Balls, M.: Benzpyrene-induced tumors in the clawed toad, Xenopus laevis. Experientia 20(3), 143 (1964).Google Scholar
  10. Bartle, K. D., M. L. Lee, and M. Novotny: An integrated approach to the analysis of air-pollutant polynuclear aromatic hydrocarbons. Proc. Anal. Div. Amer. Chem. Soc, Oct., pp. 304–307 (1976).Google Scholar
  11. Bazin, M. J., P. T. Saunders, and J. I. Prosser: Models of microbial interactions in the soil. CRC Critical Reviews in Microbiology, pp. 463-498 (1976).Google Scholar
  12. Bigger, C. A. H., J. E. Tomaszewski, A. W. Andrews, and A. Dipple: Evaluation of metabolic activation of 7, 12-dimethylbenz (a) anthracene in vitro by Araclor 1254-induced rat liver S-9 fraction. Cancer Res. 40, 655 (1980).PubMedGoogle Scholar
  13. Binet, L., and L. Mallet: Diffusion of pH in the animated environment. Gaz. Hop. (Paris) 135, 1142 (1963).Google Scholar
  14. Blum, S. C., and R. E. Swarbrick: Hydroponic growth of crops in solutions saturated with 14C-benzo(a)pyrene. J. Agr. Food Chem. 25, 1093 (1977).Google Scholar
  15. Blumer, M.: Curtisite, idrialite, and pendletonite, polycyclic aromatic hydrocarbon minerals: Their composition and origin. Chem. Geol. 16, 245 (1975).Google Scholar
  16. — Polycyclic aromatic compounds in nature. Sci. American 234(3), 35 (1976).Google Scholar
  17. —, and W. W. Youngblood: Polycyclic aromatic hydrocarbons in soils and recent sediments. Science 188, 53 (1975).PubMedGoogle Scholar
  18. Borneff, J., and R. Knerr: Carcinogenic substances in water and soil. II. Stability of 3,4-benzpyrene in light. Arch. Hyg. 143, 405 (1959).Google Scholar
  19. —, and H. Kunte: Carcinogenic substances in water and soil. XIV. Further investigations concerning polycyclic aromatic hydrocarbons in soil samples. Arch. Hyg. 147,401 (1963).Google Scholar
  20. —, G. Farkazdi, H. Glathe, and H. Kunte: The behavior of polycyclic aromate hydrocarbons in experiments with garbage-sewage sludge composts as fertilizers. Zlb. Bakt. Hyg. I. Abt. Orig. B, 157:151 (1973).Google Scholar
  21. —, F. Selenka, H. Kunte, and A. Maximos: Experimental studies on the formation of polycyclic aromatic hydrocarbons in plants. Env. Res. 2, 22 (1968a).Google Scholar
  22. — The synthesis of 3,4-benzopyrene and other polycyclic aromatic hydrocarbons in plants. Arch. Hyg. 152, 279 (1968b).Google Scholar
  23. Bourcart, J., and L. Mallet: Marine pollution of the shores of the central region of the Tyrrhenian Sea (Bay of Naples) by BP-type, pH. C. R. Acad. Sci. (Paris) 260, 3729 (1965).Google Scholar
  24. Boyland, E.: Studies in tissue metabolism. II. The inhibition of lactic dehydrogenase by derivatives of carcinogenic compounds. Biochem. J. 27, 791 (1933).PubMedPubMedCentralGoogle Scholar
  25. Braunstein, H. M.: Environmental, health, and control aspects of coal conversion: An information overview. Oak Ridge National Laboratory. Prepared for Energy Research and Development Administration. ORNL/E15-94 (1977).Google Scholar
  26. —, E. D. Copenhaver, and H. A. Pfruderer (eds.): Environmental, health, and control aspects of coal conversion: an information overview. ORNL/ EIS-94 (1977).Google Scholar
  27. Brisou, J.: Biosynthesis of 3,4-benzpyrene and anaerobiosis. C. R. Soc. Biol. 163, 772 (1969).Google Scholar
  28. Brown, E. R., J. J. Hazdra, L. Keith, F. Greenspan, J. B. Kwapinski, and P. Beamer: Frequency of fish tumors found in a polluted watershed as compared to nonpolluted Canadian waters. Cancer Res. 33, 189 (1973).PubMedGoogle Scholar
  29. Calder, J. A., and J. H. Lader: Effect of dissolved aromatic hydrocarbons on the growth of marine bacteria in batch culture. Applied Environ. Microbiol. 32, 95 (1976).Google Scholar
  30. Cerneglia, C. E., and D. T. Gibson: Metabolism of naphthalene by cell extracts of Cunninghamella elegans. Arch. Biochem. Biophys. 186, 121 (1978).Google Scholar
  31. — Oxidation of benzo(a)pyrene by the filamentous fungus Cunninghamella elegans. J. Biol. Chem. 254, 12174 (1979).Google Scholar
  32. —, R. L. Herbert, R. H. Dodge, P. J. Szaniszlo, and D. T. Gibson: Some approaches to studies on the degradation of aromatic hydrocarbons by fungi. In A. L. Bourquin and H. Pritshard (eds.); Microbial degradation of pollutants in marine environments. EPA-600/9-79-012:360-369 (1979).Google Scholar
  33. Colucci, J. M., and C. R. Begeman: Carcinogenic air pollutants in relation to automotive traffic in New York. Environ. Sci. Tech. 5, 145 (1971).Google Scholar
  34. Dagley, S.: Microbial degradation of organic compounds in the biosphere. Amer. Scientist 63, 681 (1975).Google Scholar
  35. —, W. C. Evans, and D. W. Ribbons: Polycyclic aromatic compounds. Nature 188, 560 (1960).PubMedGoogle Scholar
  36. Dao, T. L., C. King, and T. Tominaga: Isolation, identification, and biological study of compounds derived from 3-methylcholanthrene by irradiation in dimethyl sulfoxide. Cancer Res. 31, 1492 (1971).PubMedGoogle Scholar
  37. Davies, I. W., R. M. Harrison, R. Perry, D. Ratnayake, and R. A. Wellings: Municipal incinerator as source of polynuclear aromatic hydrocarbons in environment. Environ. Sci. Tech. 10, 451 (1976).Google Scholar
  38. Dean-Raymond, D., and R. Bartha: Biodegradation of some polynuclear aromatic petroleum components of marine bacteria. Chapter 9, Vol. 16 of Development in industrial microbiology. Society for Industrial Microbiology. Amer. Inst. Biol. Sciences, Washington, D.C., pp. 97-109 (1975).Google Scholar
  39. Diehl, E. K., F. du Brevil, and R. A. Glenn: Polynuclear emission from coalfired installations. J. Eng. Power. 89, 276 (1967).Google Scholar
  40. Dobbs, R. A., and J. M. Cohen: Carbon adsorption isotherms for toxic organics, U.S. Environmental Protection Agency 600/8-80-023, 321 p. (1980).Google Scholar
  41. Durmishidze, S. V., T. V. Devadariani, L. K. Kavtaradze, and L. S. H. Krartskhava: Assimilation and conversion of 3,4-benzypyrene by plants under sterile conditions. Doklady Academii Nauk SSSR 218, 1468 (1974).Google Scholar
  42. —, and D. S. H. Ugrekhlidze: Degradation of benzene in tea plants. Doklady Academii Nauk SSSR 184, 228 (1969).Google Scholar
  43. —, T. V. Devadariani, and L. K. Kavtaradze: Cleavage of 3,4-benzpyrene-l,2-14C by higher plants. Bull. Acad. Sci. Georgian SSR 70, 460 (1973).Google Scholar
  44. Eglinton, G. T., and M. T. Murphy: Organic geochemistry. New York: Pergamon (1968).Google Scholar
  45. Ershova, K. P.: Studies of the content of polycyclic hydrocarbons in effluents of petro-chemical industry and surface waters. Hyg. Sanit. 36, 474 (1971).Google Scholar
  46. Erskine, R. L., and E. V. Whitehead: Composition and analysis of marine pollutants. Iranian J. Sci. Tech. 3, 221 (1975).Google Scholar
  47. Flaig, W.: Chemistry of humic substances in relation to coalification. In R. F. Gould (ed.): Coal science, Advances In Chemistry Series 55, 58 (1965).Google Scholar
  48. Gardner, W. S., R. F. Lee, K. R. Tenore, and L. W. Smith: Degradation of selected polycyclic aromatic hydrocarbons in coastal sediments: Importance of microbes and polychaete worms. Water, Air, and Soil Pollution II, 339 (1979).Google Scholar
  49. Geissman, T. A., K. Y. Sim, and J. Murdoch: Organic minerals, picene, and chrysene as constituents of the mineral curtisite (idrialite). Experientia 23, 793 (1967).Google Scholar
  50. Gibson, D. T.: Microbial degradation of aromatic compounds. Science 161, 1093 (1968).Google Scholar
  51. — The microbial oxidation of aromatic hydrocarbons. CRC Critical Rev. Microbiol. 1, 199 (1971).Google Scholar
  52. — Microbial degradation of carcinogenic hydrocarbons and related compounds. Proc. Symp. Sources, Effects, and Sinks of Hydrocarbons in Aquatic Environment. Aug. 9-11, pp. 225-237 (1976).Google Scholar
  53. —, D. M. Jerina, H. Yagi, and H. J. C. Yeh]: Oxidation of the carcinogens benzo(a)pyrene and benzo(a)anthracene to dihydrodiols by a bacterium. Science 189, 295 (19PubMedGoogle Scholar
  54. —, G. E. Cardini, F. C. Maseies, and R. E. Kallio: Incorporation of oxygen-18 into benzene by Pseudomonas putida. Biochem. 9, 1631 (1970).Google Scholar
  55. —, J. R. Koch, and R. E. Kallio: Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochem. 7, 2653 (1968).Google Scholar
  56. Giger, W., and M. Blumer: Polycyclic aromatic hydrocarbons in the environment: Isolation and characterization by chromatography, visible, ultraviolet, and mass spectrometry. Anal. Chem. 46, 1663 (1974).PubMedGoogle Scholar
  57. Graf, W.: On the natural occurrence and importance of carcinogenic polycyclic aromatic hydrocarbons. Mediainische Klinik 60, 561 (1965).Google Scholar
  58. —, and H. Diehl: Concerning the naturally caused normal level of carcinogenic polycyclic aromatics and its cause. Arch. Hyg. 150, 49 (1966).Google Scholar
  59. —, and A. G. Hallen The phototoxic activity of carcinogenic polycyclic hydrocarbons and their degradation products in the biological test. Zentralbl. Bakteriol. Parasitenko. Infektionskr. Hyg. Abt. l: Orig., Reihe B 164, 250 (1977).Google Scholar
  60. —, and W. Nowak: Growth stimulation in lower and higher plants by carcinogenic polycyclic aromatic compounds. Arch. Hyg. Bakt. 150, 513, ORNL/tr-4111 (1966).PubMedGoogle Scholar
  61. —, and C. Winter: 3:4 Benzypyren in erdol. Arch. Hyg. 152, 289 (1968).Google Scholar
  62. Griest, W. H., and S. E. Herbes: Characterization of environmental distribution of polycyclic aromatic hydrocarbons in sediment and water in the vicinity of a coal coking plant. Amer. Chem. Soc. Meeting, Div. Environ. Chem., Anaheim, CA, Mar. 18-22 (1978).Google Scholar
  63. Grigorenko, L. T., P. P. Dikun, I. A. Kalinina, A. N. Mironova, and V. P. Rzhekhin: 3,4-Benzpyrene content in sunflower and cotton seed oils. Prikl. Biokhim. Microbiol. 6, 142 (1970).Google Scholar
  64. Grimmer, G., and D. Duvel: Endogenous formation of polycyclic hydrocarbons in higher plants. 8. Carcinogenic hydrocarbons in the environment of humans. Aeitschrift Naturforsch Teil B. 256, 1171 (1970).Google Scholar
  65. —, and A. Hildebrand: Content of polycyclic hydrocarbons in various types of vegetables and lettuce. Deutsche Lebensmittel-Rundschau. Heft 8, 237 (1965).Google Scholar
  66. Groenewegen, D., and H. Stolp: Microbial breakdown of polycyclic aromatic hydrocarbons. Tbl. Bakt. Hyg. I. Abt: Orig. B162, 225 (1976).Google Scholar
  67. Gubergrits, M., L. Paalme, and R. Kirso: Degradation of benzo(a)pyrene and phenol by physicochemical agents during self-purification of reservoirs, Vapr. Profil Zagryazeniya Vnesh Sreds, Chastnosti Vodoemor, Kentseragen Veshchestvami, pp. 49-53 (1972).Google Scholar
  68. Hakama, M., and E. A. Saxen: Cereal consumption and gastric cancer. Int. J. Cancer 2, 265 (1967).PubMedGoogle Scholar
  69. Hancock, J. L., H. G. Applegate, and J. D. Dodd: Polynuclear aromatic hydrocarbons on leaves. Atmos. Environ. 4, 363 (1970).Google Scholar
  70. Hangebrauck, R. P., D. J. Von Lehmden, and J. E. Meeker: Emissions of polynuclear hydrocarbons and other pollutants from heat generation and incineration processes. J. Air. Pollut. Control Assoc. 14, 267 (1964).PubMedGoogle Scholar
  71. Harrison, R. M., R. Perry, and R. A. Wellings: Polynuclear aromatic hydrocarbons in raw, potable, and waste waters. Water Res. 9, 331 (1975).Google Scholar
  72. Hase, A., and R. A. Hites: On the origin of polycyclic aromatic hydrocarbons in recent sediments: Biosynthesis of anaerobic bacteria. Geochim. et.Cosmochim. Acta 40, 1141 (1976).Google Scholar
  73. Hass, B. S., and H. G. Applegate: The effects of unsubstituted polycyclic aromatic hydrocarbons on the growth of Escherichia coli. Chem. Biol. 10, 265 (1975).Google Scholar
  74. Hassett, J. J., J. C. Means, W. L. Banwart, S. G. Wood, A. Khan, and S. Ali: Sorption of dibenzothiophene by soils and sediments. J. Environ. Qual. 9, 184 (1980).Google Scholar
  75. Hattori, T., and R. Hattori: The physical environment in soil microbiology: an attempt to extend principles of microbiology to soil microorganisms. CRC Critical Rev. Microbiol., pp. 423-461 (1976).Google Scholar
  76. Hayaishi, O., and M. Nozaki: Nature and mechanisms of oxygenases. Science 164, 389 (1969).PubMedGoogle Scholar
  77. Hayatsu, R., R. G. Scott, L. P. Moore, and M. H. Studier: Aromatic units in coal. Nature 257, 378 (1975).Google Scholar
  78. Herbes, S. E.: Partitioning of polycyclic aromatic hydrocarbons between dissolved and participate phases in natural waters. Water Res. 11, 493 (1977).Google Scholar
  79. — Rates of microbial transformations of polycyclic aromatic hydrocarbons in waters and sediments in the vicinity of a coal-coking wastewater discharge. Applied Environ. Microbiol. 41, 20 (1981).Google Scholar
  80. —, and L. R. Schwall: Microbial transformations of polycyclic aromatic hydrocarbons in pristine and petroleum-contaminated sediments. Applied Environ. Microbiol. 35, 306 (1978).Google Scholar
  81. —, G. R. Southworth, and C. W. Gehrs: Organic contaminants in aqueous coal conversion effluents: environmental consequences and research priorities. Trace substances in environmental health-X. A Symposium D. D. Hemphdll (ed.), Univ. Missouri, Columbia (1976).Google Scholar
  82. Hites, R. A., R. E. La Flamme, and J. W. Farrington: Sedimentary polycyclic aromatic hydrocarbons: The historical record. Science 19, 829 (1977).Google Scholar
  83. Hodgson, E., and F. E. Guthrie: Introduction to biochemical toxicology. New York: Elsevier (1980).Google Scholar
  84. Hodgson, G. W., B. Hitshon, K. Taguchi, B. L. Baker, and E. Peake: Geochemistry of porphyrins, chlorins, and polycyclic aromatics in soils, sediments, and sedimentary rocks. Geochim. Cosmochim. Acta. 32, 737 (1968).Google Scholar
  85. Horton, A. W., M. J. Burton, R. Tye, and E. L. Bingham: Composition and contaminants of distillate oils. Amer. Chem. Soc. Div. Petrol. Chem. Preprint 8, 59 (1963).Google Scholar
  86. Hussien, Y. A., M. S. Tewfik, and Y. A. Hamdi: Degradation of certain aromatic compounds by rhizobia. Soil Bio. Biochem. 6, 377 (1974).Google Scholar
  87. Il’nitskii, A. P.: Control of the pollution of water basins by carcinogenic hydrocarbons. Hyg. Sanit. 31, 389 (1966).Google Scholar
  88. —, and J. P. Cohan: Prophylaxis of food contamination with carcinogens. Voprosy Onhologii 18, 106 (1972).Google Scholar
  89. —, R. P. Ershova, A. Ya. Khesina, L. G. Rozhkova, V. G. Klubkov, and A. A. Korolev: Stability of carcinogenic substances in water and the efficacy of methods of decontamination. Gig. Sanit. 36, 8 (1971).Google Scholar
  90. —, L. G. Solenova, and V. V. Ignatova: Sanitary and oncological assessment of agricultural use of sewage containing carcinogenic hydrocarbons. Kazanskii Meditsinskii Zh. 2:80. ORNL/tr-2959 (1974).Google Scholar
  91. —, V. Yu Gvil’dis, U. S. Muschenko, and L. M. Shabad: Role of volcanoes in the formation of the natural level of carcinogens. Doklady Akademii Nauk SSSR 234, 717 (1977).Google Scholar
  92. Ishio, S., H. Nakagawa, and T. Tomiyama: Algal cancer and its causes. IL Separation of carcinogenic compounds from sea bottom mud polluted by wastes from the coal chemical industry. Bull. Japan Soc. Sci. Fish. 38, 571, ORNL/tr-2848 (1972).Google Scholar
  93. Jackson, H. M.: Synthetic fuels from coal: status and outlook of coal gasification and liquefaction. Committee on Energy and Natural Resources, U.S. Senate, Pub. No. 96-17, 1-196 (1979).Google Scholar
  94. Jamison, V. W., R. L. Raymond, and J. O. Hudson: Microbial hydrocarbon cooxidation. III. Isolation and characterization of an α,α′,dimethyl-cis, cismuconic acid-producing strain of Nor cardia corallina. Applied Microbiol. 17, 853 (1969).Google Scholar
  95. Jeffrey, A. M., H. J. C. Yeh, D. M. Jerina, T. R. Patel, J. F. Davey, and D. T. Gibson: Initial reactions in the oxidation of naphthalene by Pseudomonas putida. Biochem. 14, 575 (1975).Google Scholar
  96. Jerina, D. M., J. W. Daly, A. M. Jeffrey, and D. T. Gibson: Cis-l,2-dihydroxy-1,2-dihydronaphthalene: a bacterial metabolite from naphthalene. Arch. Biochem. Biophys. 142, 394 (1971).PubMedGoogle Scholar
  97. Jones, J. R. E.: Fish and river pollution. London: Butterworths (1964).Google Scholar
  98. Junk, G. A., and C. S. Ford: A review of organic emissions from selected combustion processes. Chemosphere 9, 187 (1980).Google Scholar
  99. Karickhoff, S. W., D. S. Brown, and T. A. Scott: Sorption of hydrophobic pollutants of natural sediments. Water Res. 13, 241 (1979).Google Scholar
  100. Karu, T., U. Kirse, and M. Gubergrits: Kinetics of the photoinduced cooxidation of benzo(a)pyrene and phenols. Eesti NSV Tead Akad. Toim, Keem, Geol. 22, 217 (1973).Google Scholar
  101. Khesina, A. Ya, N. P. Shcherback, L. M. Shabad, and I. S. Vostrov: Benzpyrene breakdown by the soil microflora. Byulleten Eksperimental’noi Biologii i Meditsiny 68, 70 (1969).Google Scholar
  102. Kingsbury, G. L., R. C. Sims, and J. B. White: Multimedia goals for environmental assessment. EPA-600/7-79-176b (1979).Google Scholar
  103. Kolar, L., R. Ledvina, J. Ticha, and R. Hanus: Contamination of soil, agricultural crops, and vegetables by 3,4-benzpyrene in the vicinity of Ceska Budejovice. Ceskosolvenska Hygiena 20, 135 (1975).Google Scholar
  104. Lane, D. A., and M. Katz: The photomodification of benzo(a)pyrene, benzo(b)-fluoranthene, and benzo(k)fluoranthene under simulated atmospheric conditions. In Suffet I. H. (ed.): Fate of pollutants in the air and water environments. Part 2, pp. 135–154. New York: Wiley (1977).Google Scholar
  105. Lee, R., W. S. Gardner, J. W. Anderson, J. W. Blaylock, and J. B. Clarke: Fate of polycyclic aromatic hydrocarbons in controlled ecosystem enclosures. Environ. Sci. Tech. 12, 832 (1978).Google Scholar
  106. Lijinsky, W., and J. H. Quastel: Metabolism of carcinogenic hydrocarbons by soil microorganisms. Arch. Biochem. Biophys. 63, 160 (1956).PubMedGoogle Scholar
  107. Lopp, A., L. Paalme, and M. Gubergrits: Kinetics of photoinduced oxidation of 7,12-dimethylbenz(a)anthracene in various solvents. Eesti NSV Tead Akad. Toim, Keem, Geol. 25, 22 (1976).Google Scholar
  108. Lu, P., R. L. Metcalf, N. Plummer, and D. Mandel: The environmental fate of three carcinogens: Benz(a)pyrene, benzidine, and vinyl chloride evaluated in laboratory model ecosystems. Arch. Environ, Contam. Toxicol. 6, 129 (1977).Google Scholar
  109. Mackay, D., and P. J. Leinonen: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. Sci. Tech. 9, 1178 (1975).Google Scholar
  110. —, and A. W. Wolkoff: Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. Sci. Tech. 7, 611 (1973).Google Scholar
  111. Macphee, C, and R. Ruelle: Lethal effects of 1888 chemicals upon four species of fish from western North America. Univ. Idaho, Coll. Forestry, Wildlife and Range Sciences, Bull. No. 3 (1969).Google Scholar
  112. Mailath, F. P., F. Medve, and J. Morik: Photolysis of 3,4-benzypyrene by ultraviolet radiation and sunlight. Egeszsgtudomany 13, 333 (1974).Google Scholar
  113. Mair, B. J., and J. L. Martinez Pico: Diagenesis of plant sterols. Proc. Amer. Petrol. Inst. 42, 173 (1962).Google Scholar
  114. Malaney, G. W., P. A. Lutin, J. J. Chibulka, and L. H. Hickerson: Resistance of carcinogenic organic compounds to oxidation by activated sludge. J. Water Pollut. Control Fed. 39, 20202 (1967).Google Scholar
  115. Mallet, L., A. Perdriau, and J. Perdriau: The extent of pollution by BP-type PH in the North Sea and Glacial Arctic Ocean. Bull. Acad. Nat. Med. (Paris) 147, 320 (1963).Google Scholar
  116. —, J. Zanghi, and J. Brisou: Investigations of the possibilities of biosynthesis of a polybenzene hydrocarbons of the benzo-3,4-pyrene type by a Clostridium putride in the presence of marine plankton lipids. Acad. Sci., Paris Ser. D. 264, 1534 (1967).Google Scholar
  117. McBride, M. B., T. J. Pinnavaia, and M. M. Mortland: Adsorption of aromatic molecules by clays in aqueous suspensions. Ithaca, New York: N.Y. State College of Agriculture and Life Sci., Cornell University (1975).Google Scholar
  118. McCann, J., and B. N. Ames: A simple method for detecting environmental carcinogens as mutagens. Ann. N.Y. Acad. Sci. 271, 5 (1975).Google Scholar
  119. McGinnes, P. R., and V. L. Snoeynik: Determination of the fate of polynuclear aromatic hydrocarbons in natural water systems. WRC Res. Rep. 80. Urbana, Illinois: University of Illinois Water Resources Center (1974).Google Scholar
  120. McKee, J. E., and H. W. Wolf (eds.): Water quality criteria, 2nd ed., Calif. State Water Resources Control Board (1963).Google Scholar
  121. McKenna, E. J.: Bio degradation of polynuclear aromatic hydrocarbon pollutants: By soil and water microorganisms. Amer. Inst. Chem. Eng. 70th Ann. Meet. Nov. 13-17, New York, NY (1977).Google Scholar
  122. Means, J. C., J. J. Hassett, S. G. Wood, and W. L. Banwart: Sorption properties of energy-related pollutants and sediments. 327–340. In P. W. Jones and P. Leber (eds.): Polynuclear aromatic hydrocarbons. Ann Arbor, Mich.: Ann Arbor Sci. Publ., Inc. (1979).Google Scholar
  123. Means, J. C. —, G. S. Wood, J. J. Hassett, and W. L. Banwart: Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Tech. 14, 1524 (1980).Google Scholar
  124. Medvedev, V. A., and V. D. Davidov: Transformation of individual organic products of the coke industry in chernozemic soils. Pochvovedenie 11, 22 (1972).Google Scholar
  125. Murdock, J., and T. A. Geissman: Pendletonite, a new hydrocarbon mineral from California. Amer. Mineral 52, 611 (1967).Google Scholar
  126. National Academy of Sciences, National Research Council: Particulate polycyclic organic matter. Washington, D.C.: National Academy of Sciences (1972).Google Scholar
  127. Niaussat, P., C. Auger, and L. Mallet: Appearance of carcinogenic hydrocarbons in pure Bacillus hadius cultures relative to the presence of certain compounds in the medium. Compt. Rend. 270D, 1042 (1970).Google Scholar
  128. —, L. Mallet, and J. Ottenwaelder: Appearance of 3,4-benzpyrene in various strains of marine phytoplankton raised in vitro. Compt. Rend. Acad. Sci. Paris, t. 268, 1109 (1969).Google Scholar
  129. Nozaki, M., H. Kagamiyama, and O. Hayaishi: Metapyrochatechase. I. Purification, crystallization and some properties. Biochem. Z. 338, 582 (1963).PubMedGoogle Scholar
  130. Paalme, L., and M. Gubergrits: Kinetics of photodecomposition of 1,2-benzpyrene. Eesti NSV Tead Akad. Toim, Keem, Geol. 21, 48 (1972).Google Scholar
  131. — Kinetics of cooxidation of 1,2-and 3,4-benzpyrene activated by UV radiation. In N. M. Emanuel (ed.): Tear Prakt Zhidkofazn Okieleniya, pp. 12–122, Nauka, Moscow, U.S.S.R. (1974).Google Scholar
  132. — Kinetics of the separate and combined photo degradation of benzo(a)pyrene, pyrene, and 3-methylcholanthrene. Eesti NSV Tead Akad. Toim, Keem, Geol. 25, 271 (1976).Google Scholar
  133. —, A. Lopp, and M. Gubergrits: Kinetics of cooxidative photodegradation of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene. Eesti NGV Tead Akadd. Toim, Keem, Geol. 25, 247 (1976).Google Scholar
  134. —, R. Priiman, M. I. Gloshko, and M. Gubergrits: Simultaneous photoinduced oxidation of 3,4-benzpyrene and alkyl arylsulfonates. Vodn. Resur.,pp. 174–178 (1975).Google Scholar
  135. Panalaks, T.: Determination and identification of polycyclic aromatic hydrocarbons in smoked and charcoal-broiled food products by high pressure liquid chromatography. J. Environ. Sci. Health B 11, 299 (1976).Google Scholar
  136. Perry, J. J.: Microbial cooxidations involving hydrocarbons. Microbiol. Rev. 45, 59 (1979).Google Scholar
  137. Poglazova, M. N., G. E. Fedoseeva, A. J. Khesina, M. N. Meissel, and L. M. Shabad: Destruction of benzo (a)pyrene by soil bacteria. Life Sciences 6, 1053 (1967a).PubMedGoogle Scholar
  138. A. J. Khesina, M. N. Meissel, and L. M. Shabad — Further investigations of the decomposition of benz(a) pyrene by soil bacteria. Doklady Akademii Nauk SSSR. 176, 1165 (1967b).PubMedGoogle Scholar
  139. A. J. Khesina, M. N. Meissel, and L. M. Shabad — The oxidation of benz (a) pyrene by microorganisms in relation to its concentration in the medium. Doklady Akademii Nauk SSSR 179, 1460 (1968).PubMedGoogle Scholar
  140. Radding, S. B., T. Mill, C. W. Gould, D. H. Liu, H. L. Johnson, D. C. Bomberger, and C. V. Fojo: The environmental fate of selected polynuclear aromatic compounds. U.S. Environmental Protection Agency, 122 p. EPA-560/5-75-009 (1976).Google Scholar
  141. Raymond, R. L., V. W. Jamison, and J. O. Hudson: Microbial hydrocarbon cooxidation. I. Oxidation of mono-and dicyclic hydrocarbons by soil isolates. Applied Microbiol. 15, 857 (1967).Google Scholar
  142. Reinbold, K. A., J. J. Hassett, J. C. Means, and W. L. Banwart: Adsorption of energy-related organic pollutants: a literature review. Inst. Environ. Sci., Dept. Agron., Univ. EL, Urbana, Champaign, for U.S. EPA Office for Research and Development, Athens, GA, 130 p. (1978).Google Scholar
  143. Rogoff, M. H., and I. Wender: The microbiology of coal. I. Bacterial oxidation of phenanthrene. J. Bacteriol. 73, 264 (1957).PubMedPubMedCentralGoogle Scholar
  144. Rohrlich, M., and P. Suckow: Oxidative modification of 3,4-benzpyrene on cereals and in pastry. Chem. Mikrobiol. Technol. Lebensm. 2, 137 (1973).Google Scholar
  145. Rondia, D., and S. S. Epstein: Effect of antioxidants on photodecomposition of benzo(a)pyrene. Life Sci. 7, 513 (1968).Google Scholar
  146. Ryan, P. W., and C. K. McMahon: Some chemical and physical characteristics of emissions from forest firest. Paper 76-2.3, 69th Annual Meeting Air Pollution Control Assoc, Portland, OR, June 27-July 1 (1976).Google Scholar
  147. Sawicki, E., J. E. Meeker, and M. J. Morgan: Polynuclear aza compounds in automotive exhaust. Arch. Environ. Health 11, 773 (1965).PubMedGoogle Scholar
  148. Selander, H., H. Yagi, D. M. Jerina, M. C. Wells, J. F. Davey, V. Mahadevan, and D. T. Gibson: Dihydrodiols from anthracene and phenanthrene. J. Amer. Chem. Soc. 129, 67 (1971).Google Scholar
  149. Shabad, L. M.: Studies in the U.S.S.R. on the distribution, circulation, and fate of carcinogenic hydrocarbons in the human environment and the role of their disposition in tissues in carcinogenesis. A Review. Cancer Res. 27, 1132 (1967).PubMedGoogle Scholar
  150. — Circulation of carcinogenic substances in the environment: From laboratory experiments to field investigations. GANN Monograph on Cancer Research 17, 179 (1975).Google Scholar
  151. —, and Y. L. Cohan: The contents of benzo(a)pyrene in some crops. Arch. Geschwultsforsch 40, 237 (1972).Google Scholar
  152. —, A. Ya Khesina, H. P. Schubak, and G. A. Smirnov: The carcinogenic hydrocarbon benzo(a)pyrene in the soil. J. Nat. Cancer Inst. 47, 1179 (1969).Google Scholar
  153. Shamsuzzaman, K. M., and E. A. Barnsley: The regulation of naphthalene metabolism in pseudomonas. Biochem. Biophys. Res. 60, 592 (1974). 1179 (1969).Google Scholar
  154. Shamsuzzaman, K. M., and E. A. Barnsley: The regulation of naphthalene metabolism in pseudomonas. Biochm. Biophys. Res. 60, 592 (1974).Google Scholar
  155. Shcherbak, N. P.: Some results of a study of the fate of benz(a)pyrene in soil. Vapr. Onkel. 15, 75 (1969).Google Scholar
  156. Sherrill, T. W., and G. S. Sayler: Phenanthrene biodegradation in freshwater environments. Applied Environ. Microbiol. 39, 172 (1980).Google Scholar
  157. Shiraishi, Y.: Determination of polycyclic aromatic hydrocarbons in food. IV. 3,4-Benzpyrene in fish and shellfish. J. Food. Hyg. Soc. Japan 16, 178 (1975).Google Scholar
  158. —, and E. Takabatake: Determination of polycyclic aromatic hydrocarbons in foods. 3. 3,4-Benzopyrene in vegetables. Shokuhin Eiseigaku Zasshi 15, 18, ORNL/tr-4125 (1974).Google Scholar
  159. Siddiqi, I., and K. H. Wagner: Determination of 3,4-benzpyrene and 3,4-benzfluoranthene in rain water, ground water, and wheat. Chemosphere 1, 83 (1972).Google Scholar
  160. Siegfried, R.: Effect of garbage compost on the 3,4-benzpyrene content of carrots and head lettuce. Naturwissenschaften 62, 300, ORNL/tr-4124 (1975).Google Scholar
  161. Sims, R. C: Land treatment of polynuclear aromatic compounds. PhD disserta’tion. Dept. Biol. Agr. Eng., No. Carolina State Univ., Raleigh, NC (1982).Google Scholar
  162. Simmon, V., and J. M. Baden: Mutagenic activity of vinyl compounds and derived epoxides. Mut. Res. 78, 227 (1980).Google Scholar
  163. Sisler, F. D., and C. E. Zobell: Microbial utilization of carcinogenic hydrocarbons. Science 106, 521 (1947).PubMedGoogle Scholar
  164. Skrigan, A. L: Diagenesis of α-pinene in pine stumps. Doklady Akad. Nauk. SSSR 80, 607 (1951).Google Scholar
  165. — Diagenesis of abietic acid in buried pine trees. Through Chem. Abstr. 62, 10664 (1965).Google Scholar
  166. Smirnov, G. A.: The study of the benz(alpha)pyrene content in the soil and vegetation in the airfield region. Vop. Onkol. 16, 83 (1970).Google Scholar
  167. Smith, J., W. R. Mabey, N. Bohomos, B. R. Holt, S. S. Lee, T. W. Chou, D. C. Bomberger, and T. Hill: Environmental pathways of selected chemicals in freshwater systems. U.S. EPA (Office of Research and Development), Athens, GA. EPA-600/7-78-074 (1978).Google Scholar
  168. Southworth, G. R.: Transport and transformation of anthracene in natural waters: Process rate studies. Oak Ridge, Tennessee: U.S. Department of Energy (ORNL) 26 p. (1977).Google Scholar
  169. —, J. J. Beauchamp, and P. K. Schmieder: Bioaccumulation potential of polycyclic aromatic hydrocarbons in Daphnia pulex. Water Res. 12, 973 (1978).Google Scholar
  170. Stanier, R. Y., and J. L. Ingraham: Protocatechuic acid oxidase. J. Biol. Chem. 210, 799 (1954).PubMedGoogle Scholar
  171. Stevens, B., and B. E. Algar: Photoperoxidation of unsaturated organic molecules. II. Autoperoxidation of aromatic hydrocarbons. J. Phys. Chem. 72, 3468 (1968).Google Scholar
  172. Stotzky, G.: Techniques to study interactions between microorganisms and clay minerals in vivo and in vitro. Bull. Ecol. Res. Comm. (Stockholm) 17, 17 (1973).Google Scholar
  173. Suess, M. J.: Aqueous solutions of 3,4-benzpyrene. Water Res. 6, 981 (1972a).Google Scholar
  174. — Polynuclear aromatic hydrocarbon pollution of the marine environment. In M. Ruivo (ed.): Marine pollution and sea life. London. Fishing New Books (1972 b).Google Scholar
  175. — The environmental load and cycle of polycyclic aromatic hydrocarbons. The Sci. of the Total Environ. 6: 239–250 (1976).Google Scholar
  176. Tausson, V. O.: In N. A. Meximov (ed.): Basic principles of plant bioenergetics. Acad. Sci, U.S.S.R. (1950).Google Scholar
  177. Thakker, D. R., W. Levin, H. Yagi, M. Tada, A. H. Conney, and D. M. Jerina: Comparative metabolism of dihydrodiols of polycyclic aromatic hydrocarbons to bay region diol epoxides. Fourth Internat. Symp. Polynuclear Aromatic Hydrocarbons. Columbus, OH, Oct. 2-4, 1979, U.S. EPA: Battelle Press (1980).Google Scholar
  178. Tye, R., M. J. Burton, E. Bingham, A. Bell, and A. W. Horton: Carcinogens in a cracked petroleum residuum. Arch. Environ. Health 13, 202 (1966).PubMedGoogle Scholar
  179. U.S. EPA: Review and evaluation of available techniques for determining persistence and routes of degradation of chemical substances in the environment. Syracuse Univ. Res. Corp., NTIS PB-243825, 549 pp. (1975 a).Google Scholar
  180. — Scientific and technical assessment report on particulate polycyclic organic matter (PPOM). Star Series. Superintendent of Documents, Washington, D.C.: U.S. Government Printing Office, EPA-600/6-74-001 (1975 b).Google Scholar
  181. — Rationale for recommended list of priority pollutants. Memo to director of Effluent Guidelines Division. Nov. 19 (1976).Google Scholar
  182. — Environmental pathways of selected chemicals in freshwater systems. Part II. Laboratory studies. EPA-600/7-78-074 (1978).Google Scholar
  183. Versar, Inc.: Water related environmental fate of 129 priority pollutants. A literature search. V. polycyclic aromatic hydrocarbons, PCBs and related compounds. For U.S. EPA Office of Water Planning and Standards, Washington, D.C. (1979).Google Scholar
  184. Wagner, Van K. H., and I. Siddiqi: The metabolism of 3,4-benzpyrene and 3,4-benzfluoranthene in summer wheat. Z. Pflanzen Bodenkundle 127, 211 (1970).Google Scholar
  185. Wagner, K. H., and C. Vonderheid: Polycyclic aromatic hydrocarbons in technically prepared composts. Naturwissenschaften 65, 491 (1978).Google Scholar
  186. —, and E. Wagner-Hering: The cycle of cancer-causing substances-polycyclic aromatic hydrocarbons-in plants and humans. Protectio Vitae 6, 260 (1971).Google Scholar
  187. Webley, D. M., R. B. Duff, and V. C. Farmer: The metabolism of iron-, zinc-and manganese deficient bacteria. J. General Microbiol. 29, 179 (1962).Google Scholar
  188. Windsor, J. G., and R. A. Hites: Polycyclic aromatic hydrocarbons in Gulf of Maine sediments and Nova Scotia soils. Geochim et. Cosmochim. Acta 43, 27 (1979).Google Scholar
  189. Wiser, W. H.: Some chemical aspects of coal liquefication. Paper presented Short Course on Coal Characteristics and Coal Conversion Processes, Oct. 29-Nov. 2, Pennsylvania State Univ., Univ. Park, PA (1973).Google Scholar
  190. Wright, A. S.: The role of metabolism in chemical mutagenesis and chemical carcinogenesis. Mut. Res. 75, 215 (1980).Google Scholar
  191. Wynder, E. L., J. Kmet, N. Dungal, and N. Segi: An epidemiological investigation of gastric cancer. Cancer 16, 1461 (1963).PubMedGoogle Scholar
  192. Youngblood, W. W., and M. Blumer: Polycyclic aromatic hydrocarbons in the environment: Homologous series in soils and recent marine sediments. Geochim. et Cosmochim. Acta 39, 1303 (1975).Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1983

Authors and Affiliations

  • R. C. Sims
    • 1
  • M. R. Overcash
    • 2
  1. 1.Department of Civil and Environmental EngineeringUtah State University, and Utah Water Research LaboratoryLoganUSA
  2. 2.Department of Chemical EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations