Advertisement

The Significance of Matrix Zones for Brain Regeneration and Brain Transplantation with Special Consideration of Lower Vertebrates

  • Walter Kirsche
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Nearly 200 years aGo, Fontana (1787) Demonstrated successful regeneration in a severed peripheral nerve. In the same year, Arnemann (1787) showed that there was no regeneration in the central nervous system. These characteristic differences in regeneration in the two systems have been accepted by many scientists during the past two centuries. However, various studies during this period have suggested that regeneration in the central nervous system, although limited in degree, is possible. The issue of regeneration in the central nervous system has acquired a special significance, particularlys in light of recent research on transplantation of nervous tissues. Although this volume is addressed to the transplantation of nervous tissues, it is believed that transplantation and regeneration are intimately related. Regeneration may be considered as an important requirement for achieving successful transplantation. With this background, I would like to show some important interrelations between regeneration and transplantation, particularly in the lower vertebrates.

Keywords

Xenopus Laevis Optic Tectum Olfactory Nerve External Granular Layer Fiber Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, J. H., Daniel, P. M., Prichard, M. M. L. (1969). Degeneration and regeneration of hypothalamic nerve fibers in the neurohypophysis after pituitary stalk section in the ferret. J. Comp. Neurol. 135, 121–144.PubMedCrossRefGoogle Scholar
  2. Altman, J. (1963). AutoradioGraphic investiGation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–592.PubMedCrossRefGoogle Scholar
  3. Altman, J., Das, G. D. (1965a). Post-natal origin of microneurons in the rat brain. Nature (London) 207, 953–956.CrossRefGoogle Scholar
  4. Altman, J., Das, G. D. (1965b). AutoradioGraphic and histoloGical evidence of postnatal hippocampal neuroGenesis in rats. J. Comp. Neurol. 124, 319–336.PubMedCrossRefGoogle Scholar
  5. Altman, J., Das, G. D. (1966). AutoradioGraphic and histoloGical evidence of postnatal neuroGenesis. I. J. Comp. Neurol. (Philadelphia) 126, 337–390.CrossRefGoogle Scholar
  6. Arnemann, J. (1787). Versuche über die Regeneration an lebenden Thieren. I. Bd.: Über die Regeneration der Nerven. GöttinGen: Joh. Christian dieterich.Google Scholar
  7. Baffoni, G. M. (1959). Effetti dell’ormone trioideo sul sistema nervoso centrale di larve di Anfibi anuri. Osservazioni sull’ attivta mitotica. Boll. Zool. 26, 255–282.CrossRefGoogle Scholar
  8. Baffoni, G. M. (1970). Localizzazione delle mitosi nel sistema nervoso centrale in rigenerazione di adulti di Anfibi. Accad. Naz. Lincei 48, Series 8, 733–738.Google Scholar
  9. Bernstein, J. J. (1964). Relation of spinal cord regeneration to aGe in adult Goldfish. Exp. Neurol. 9, 161–174.PubMedCrossRefGoogle Scholar
  10. Bernstein, J. J., Bernstein, M. E. (1971). Axonal regeneration and formation of synapses proximal to the site of lesion followinG hemisection of the rat spinal cord. Exp. Neurol. 30, 336–351.PubMedCrossRefGoogle Scholar
  11. Bernstein, J. J., Bernstein, M. E. (1973). Neuronal alteration and reinnervation followinG axonal regeneration and sproutinG in mammalian spinal cord. Brain Behav. Evol. 8, 135–161.PubMedCrossRefGoogle Scholar
  12. Bernstein, J. J., Sadlack, F. J. (1969). The formation of new neurons during abortive regeneration of the Goldfish telencephalon: An autoradiographic study. Anat. Rec. 163, 154.Google Scholar
  13. Bernstein, J. J., Wells, M. R., Bernstein, M. E. (1978). Spinal cord reGeneration: Synaptic renewal and neuro chemistry. In: Neuronal Plasticity. Cotman, C. W. (ed.). New York: Raven Press, pp. 49–71.Google Scholar
  14. Birse, S. C., Leonard, R. B., CoGGeshall, R. E. (1980). Neuronal increase in various areas of the nervous system of the Guppy, Lebiste. J. Comp. Neurol. 194, 291–301.PubMedCrossRefGoogle Scholar
  15. BJerre, B., Björklund, A., Stenevi, U. (1973). Stimulation of Growth of new axonal sprouts from lesioned monoamine neurones in adult rat brain by nerve Growth factor. Brain Res. 60, 161–176.PubMedCrossRefGoogle Scholar
  16. BJerre, B., Wiklund, L., Edwards, D. C. (1975). A study of the de-and reGenerative chanGes in the sympathetic nervous system of the adult mouse after treatment with the antiserum to nerve Growth factor. Brain Res. 92, 257–278.PubMedCrossRefGoogle Scholar
  17. Björklund, A., Johansson, Stenevi, U., Svendgaard, N. A. (1975). Re-establishment of functional connections by reGeneratinG central adrenergic and cholinergic axons. Nature (London) 253, 446–447.CrossRefGoogle Scholar
  18. Björklund, A., Stenevi, U. (1979). Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol. Rev. 59, 62–100.PubMedGoogle Scholar
  19. Borst, M. (1904). Neue Experimente zur FraGe nach der RegenerationsfähiGkeit des Gehirns. Beitr. Pathol. Anat. (Jena) 36, 1–87.Google Scholar
  20. Borst, M. (1907). Weiterer BeitraG zur FraGe der Regeneration im Gehirn. Festschr. Rindfleisch. 158–171.Google Scholar
  21. Botsch, D. (1960). Dressur-und Transpositionsversuch bei Karauschen (Carassius, teleostei) nach partieller Exstirpation des Tectum opticum. Zschr. VerGl. Physiol. 43, 173–230.Google Scholar
  22. Bowen, F. P., St. Karpiak, Jr., E., DemirGian, Ch., Katzman, R. (1975). SproutinG of noradrenergic nerve terminals subsequent to freeze lesions of rabbit cerebral cortex. Brain Res. 83, 1–14.CrossRefGoogle Scholar
  23. BraJnes, S. N., SvecinskiJ, V. B. (1970). Probleme der Neurokybernetik und Neuro-bionik. Jena: VEB G. Fischer Verlag.Google Scholar
  24. Bresler, D. E., Bitterman, M. E. (1969). LearninG in fish with transplanted brain tissue. Science 163, 590–592.PubMedCrossRefGoogle Scholar
  25. Brody, H. (1955). OrGanization of the cerebral cortex. III. A study of aGinG in the human cerebral cortex. J. Comp. Neurol. 102, 511–556.PubMedCrossRefGoogle Scholar
  26. Burr, H. S. (1920). The transplantation of the cerebral hemispheres of Amblystoma. Z.Exp.Zool. 30, 159–169.CrossRefGoogle Scholar
  27. Christ, J. (1951). Zur Anatomie des Tuber cinereum beim erwachsenen Menschen. Dt. Z. Nervenhk. 165, 340–408.Google Scholar
  28. Clairambault, P. (1970). Les effects de l’ablation du pallium dur la morphoGenèse du télencéphale des Anoures. Acta Embryol. Exp. 3, 205–220.Google Scholar
  29. Clemente, C. D. (1964). Regeneration in the vertebrate central nervous system. Int. Rev. Neurobiol. 6, 257–301.PubMedCrossRefGoogle Scholar
  30. Cotman, C. W., Nadler, J. V. (1978). Reactive Synaptogenesis in the hippocampus. In: Neuronal Plasticity. Cotman, C. W. (ed.). New York: Raven Press, pp. 227–271.Google Scholar
  31. Das, G. D. (1971). Experimental studies on the postnatal development of the brain. I. CytoGenesis and morphoGenesis of the accessory fascia dentata followinG hippo-campal lesions. Brain Res. 28, 263–282.PubMedCrossRefGoogle Scholar
  32. Das, G. D. (1973). Transplantation of cerebellar tissue in the cerebellum of neonate rabbits. Brain Res. 50, 170–173.PubMedCrossRefGoogle Scholar
  33. Das, G. D. (1974). Transplantation of embryonic neural tissue in the mammalian brain. I. Growth and Differentiation of neuroblasts from various regions of the embryonic brain in the cerebellum of neonate rats. TIT J. Life Sci. 4, 93–124.PubMedGoogle Scholar
  34. Das, G. D. (1975). Differentiation of dendrites in the transplanted neuroblasts in the mammalian brain. In: Advances in Neurology. Physiology and Pathology of dendrites, Vol. 12. Kreutzberg, G. W. (ed.). New York: Raven Press, pp. 181–199.Google Scholar
  35. Das, G. D., Altman, J. (1971). The fate of transplanted precursors of nerve cells in the cerebellum of young rats. Science 173, 637–638.PubMedCrossRefGoogle Scholar
  36. Das, G. D., Altman, J. (1972). Studies on the transplantation of Developing neural tissue in the mammalian brain. I. Transplantation of cerebellar slabs into the cerebellum of neonate rats. Brain Res. 38, 233–249.PubMedCrossRefGoogle Scholar
  37. Das, G. D., Hallas, B. H., Das, K. D. (1980). Transplantation of brain tissue in the brain of rat. I. Growth characteristics of neocortical transplants from embryos of Different ages. Am. J. Anat. 158, 135–145.PubMedCrossRefGoogle Scholar
  38. De Both, N. J. (1968). Transplantation of axolotl heads. Science 162, 460–461.PubMedCrossRefGoogle Scholar
  39. De Both, N. J. (1970). Transplantation immunity in the axolotl (Ambystoma mexi-canum) studied by blastemal Grafts. J. Exp. Zool. 173, 148–158.Google Scholar
  40. Del Grande, P., Minelli, G. (1971). Prime osservazioni sulla rigenerazione Del tetto ottico Di Triturus cristatus carnifex. (Atti Del XL ConveGno Nazionale Del-l‘UZI) Boll. Zool. 38, 516–517.Google Scholar
  41. Del Grande, P., Minelli, G. (1980). Response of the reGeneratinG telencephalon of Lacerta viridis to nerve Growth factor. Z. Mikrosk.-Anat. Forsch. 94, 785–793.PubMedGoogle Scholar
  42. Detwiler, S. R. (1931). Heteroplastic transplantations of embryonic spinal cord seGments in Amblystoma. J. Exp. Zool. 60, 141–171.CrossRefGoogle Scholar
  43. Detwiler, S. R. (1945). The results of unilateral and bilateral extirpation of the forebrain of Amblystoma. J. Exp. Zool. 100, 103–117.CrossRefGoogle Scholar
  44. Detwiler, S. R. (1946). Midbrain regeneration in Amblystoma. Anat. Rec. 94, 229–237.PubMedCrossRefGoogle Scholar
  45. Detwiler, S. R. (1949a). The response of Amblystoma larvae with midbrain replaced by a supernumerary medulla. J. Exp. Zool. 110, 321–336.PubMedCrossRefGoogle Scholar
  46. Detwiler, S. R. (1949b). The swimminG capacity of Amblystoma larvae followinG reversal of the embryonic hindbrain. J. Exp. Zool. 111, 79–93.PubMedCrossRefGoogle Scholar
  47. Detwiler, S. R. (1951). Structural and functional adjustments followinG reversal of the embryonic medulla in Amblystoma. J. Exp. Zool. 116, 431–446.PubMedCrossRefGoogle Scholar
  48. Detwiler, S. R. (1952). Further observations on motor responses of Amblystoma larvae followinG transplantation of primary brain seGments. J. Exp. Zool. 119, 189–204.CrossRefGoogle Scholar
  49. Dunn, E. H. (1917). Primary and secondary findings in a series of attempts to transplant cerbral cortex in the albino rat. J. Comp. Neurol. 27, 565–582.CrossRefGoogle Scholar
  50. Eccles, J. C. (1976). The plasticity of the mammalian central nervous system with special reference to new Growths in response to lesions. Naturwissenschaften 63, 8–15.PubMedCrossRefGoogle Scholar
  51. Efimov, M. I. (1956). Possibilities of transplantation of nervous tissue in mammals (russ.). Probl. Sevr. Embriol. 340–345.Google Scholar
  52. Field, P. M., Coldham, D. E., Raisman, G. (1980). Synapse formation after injury in the adult rat brain: Preferential reinnervation of Denervated fimbrial sites by axons of the contralateral fimbria. Brain Res. 189, 103–114.PubMedCrossRefGoogle Scholar
  53. Filoni, S. (1964). Aspetti morphologici ed istoloGici Della rigenerazione del telen-cephalo in larve di Xenopus laevis. Rend. Ist. Sci. Camerino 5, 111–134.Google Scholar
  54. Filoni, S. (1968a). Sulla origine del materiale neoformato nella rigenerazione del mesencefalo in larve di Xenopus laevis. Rend. Acc. Naz. Lincei 45, 90–99.Google Scholar
  55. Filoni, S. (1968b). Morfologia casuale Della rigenerazione Del mesencefalo Di Anfibi anuri. Boll. Zool. 35, 396–397.Google Scholar
  56. Filoni, S. (1969). Sulla morfoGenesi Del mesencefalo riGenerante in larve Di Xenopus laevis. Arch. Ital. Anat. Embriol. 74, 89–109.PubMedGoogle Scholar
  57. Filoni, S., Donatelli, M. V. (1969). Sulla rigenerazione Del cervelletto in Xenopus laevis. RiGenerazione nella larva. Rend. Acc. Naz. Lincei 46, 111–116.Google Scholar
  58. Filoni, S., MarGotta, V. (1969). Comportamento Di seGmenti Di miDollo spinale trapiantati nel sottocutaneo Di tritoni adulti in conDizione autoplastica eD omo-plastica. Acta Embryol. Exp. No. 2-3, 169–196.Google Scholar
  59. Filoni, S., MarGotta, V. (1971). A study of the regeneration of the cerebellum of Xenopus laevis (DauDin) in the larval staGes and after metamorphosis. Arch. Biol. (LieGe) 82, 433–470.Google Scholar
  60. Filoni, S., Oberti, C., Stefanelli, A. (1968). Fenomeni riGenerativi Del mesencefalo in adulti Di Xenopus laevis. Acc. Naz. Lincei 45, Series 8, 28–34.Google Scholar
  61. Filoni, S., Stefanelli, A. (1968). Sulla origine Del materiale neoformato nella rigenerazione Del mesencefalo in larve Di Xenopus laevis. Acc. Naz. Lincei 45, Series 8, 18–27.Google Scholar
  62. Fleischhauer, K. (1957). Untersuchungen am Ependym Des Zwischen-unD Mittelhirns Der LanDschilDkröte (TestuDo Graeca). Z. Zellforsch. 46, 729–767.PubMedCrossRefGoogle Scholar
  63. Fleischhauer, K. (1970). Über Die postnatale EntwicklunG Des Stratum subcallosum im VorDerhorn Des Seitenventrikels Der Katze. A. Anat. Entwickl.-Gesch. 132, 1–17.CrossRefGoogle Scholar
  64. Flohr, H., Precht, W. (1981). Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Berlin/HeiDelberG/New York: SprinGer-Verlag.Google Scholar
  65. Fontana, F. (1787). AbhanDlunG über Das VipernGift, Die Amerikanischen Gifte, Das KirschlorbeerGift und einiGe anDere PflanzenGifte nebst einiGen BeobachtunGen über den ursprüGlichen Bau Des thierischen Körpers, über Die WieDererzeuGunG Der Nerven und De BeschreibunG eines neuen AuGenkanals. Berlin: F. HimburG.Google Scholar
  66. Freeman, L. W. (1952). Return of function after complete transection of the spinal cord of the rat, cat and DoG. Ann. SurG. 136, 193–205.PubMedCrossRefGoogle Scholar
  67. Freeman, L. W. (1954). Return of spinal cord function in mammals after transectinG lesions. Ann. N.Y. AcaD. Sci. 58, 564–568.CrossRefGoogle Scholar
  68. Freeman, L. W. (1955). Functional recovery in spinal rats. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III: Charles C. Thomas, pp. 195–207.Google Scholar
  69. Frotscher, M., Rinne, U., Hassler, R., WaGner, A. (1981). Termination of cortical afferents on iDentifieD neurons in the cauDate nucleus of the cat. A combineD GolGi-EM Degeneration study. Exp. Brain Res. 41, 329–337.PubMedGoogle Scholar
  70. GiersberG, H. (1935). Gehirntransplantationen bei Amphibien. Verh. Dtsch. Zool. Ges. 37, 160–168.Google Scholar
  71. GiersberG, H. (1936). GehirnverpflanzunG bei Amphibien. Forsch. Fortschr. 12, 326–327.Google Scholar
  72. Glees, P. (1955). StuDies of cortical regeneration with special reference to cerebral implants. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C. Thomas, pp. 94–111.Google Scholar
  73. Goldman, P. S., Galkin, Th. W. (1978). Prenatal removal of frontal association cortex in the fetal rhesus monkey: Anatomical and functional consequences in postnatal life. Brain Res. 152, 451–485.PubMedCrossRefGoogle Scholar
  74. Good, R. A., FinstaD, J. (1964). PhyloGenetic Development of transplantation immunity. Ann. N.Y. AcaD. Sci. 120, 15–20.PubMedCrossRefGoogle Scholar
  75. Graziadei, P. P. C., Monti Graziadei, G. A. (1978). The olfactory system: A model for the study of NeuroGenesis and axon regeneration in mammals. In: Neuronal Plasticity. Cotman, C. W. (ed.). New York: Raven Press, pp. 131–153.Google Scholar
  76. Grosse, G., Lindner, G. (1977). Influence of pharmacoloGical aGents on cultures of nervous tissue. Proc. Neurobiol. Symp. (MaGDeburG) 427–432.Google Scholar
  77. Grosse, G., Lindner, G. (1980). Experimental influence of pharmacoloGical aGents on the regeneration of nervous tissue in vitro. Folia Morphol. XXVIII No. 4, 345–347.Google Scholar
  78. Grosse, G., Lindner, G. (1981). Über Die EntwicklunG Des NervenGewebes unter experimentellen BeDinGunGen Der In-vitro-Kultur. Z. Mikrosk.-Anat. Forsch. 95, 191–196.PubMedGoogle Scholar
  79. HaGer, H. (1966). RegenerationsvorGänGe am Neuron Des Zentralen Nervensystems. Verh. Dt. Ges Pathol. 50. Stuttgart: Tagung, Gustav Fischer Verlag, pp. 255–275.Google Scholar
  80. Hallas, B. H., Das, G. D., Das, K. G. (1980). Transplantation of brain tissue in the brain of rat. II. Growth characteristics of neocortical transplants in hosts of Different aGes. Am. J. Anat. 158, 147–159.PubMedCrossRefGoogle Scholar
  81. Hamburger, V. (1955). Regeneration in the central nervous system of reptiles and of birDs. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C. Thomas, pp. 47–53.Google Scholar
  82. Haug, H. (1975). Neure Aspekte über ber den biologischen Alterungsvorgang im menschlichen Gehirn. Verh. Anat. Ges. 69, 389–395.PubMedGoogle Scholar
  83. Herschkowitz, M., Segal, M., Samuel, D. (1972). The acquisition of Dark avoidance by transplantation of the forebrain of trained newts (Pleurodeles waltl). Brain Res. 48, 366–369.CrossRefGoogle Scholar
  84. Hildemann, W. H., Cooper, E. L. (1963). ImmunoGenesis of homoGraft reactions in fishes and amphibians. Fed. Proc. 22, 1145.PubMedGoogle Scholar
  85. Hildemann, W. H., Haas, R. (1959). Homotransplantation immunity and tolerance in the bullfrog. J. Immunol. 83, 478–485.PubMedGoogle Scholar
  86. Hinds, J. W. (1968). Autoradiographic study of histoGenesis in the mouse olfactory bulb. II. Cell proliferation and miGration. J. Comp. Neurol. 134, 305–322.PubMedCrossRefGoogle Scholar
  87. Horvat, J. C. (1967). Réactions réGénératives provoquées Dans le cervelet De la souris par Des Greffes tissulaires homoplastiques et bréphoplastiques. Arch. Sci. Physiol. (Paris) 21, 323–343.Google Scholar
  88. Ivannikova, T. V. (1963). Über Die MöGlichkeit Der TeilunG corticaler Neurone (russ.). Bull. Exp. Med. (Moskau) 55, H.1, 93–96.Google Scholar
  89. Jaeger, G. B., Lund, R. D. (1980). Transplantation of embryonic Occipital cortex to the tectal reGion of newborn rats: A light microscopic study of orGanization and connectivity of the transplants. J. Comp. Neurol. 194, 571–597.PubMedCrossRefGoogle Scholar
  90. Jakoby, R. K., Turbes, C. C., Freeman, L. W. (1960). The problem of neuronal regeneration in the central nervous system. I. The insertion of centrally connecteD peripheral nerve stumps into the spinal corD. J. Neurosurg. 17, 385–393.PubMedCrossRefGoogle Scholar
  91. Jordan, M. (1958). Regeneration of the enDbrain in postmetamorphic Xenopus laevis. Folia Biol. (Kraków) 6, 103–116.Google Scholar
  92. Kahle, W. (1951). StuDien über Die Matrixphasen und Die örtlichen ReifunGsunterschieDe im embryonalen menschlichen Gehirn. 1. MitteilunG: Die Matrixphasen im allGemeinen. Dtsch. Zschr. Nervenhk. 166, 273–302.Google Scholar
  93. Kao, C. C., ChanG, L. W., BlooDworth, J. M. B. (1977). Axonal regeneration across transecteD mammalian spinal corDs: An electron microscopic study of DelayeD microsurGical nerve GraftinG. Exp. Neurol. 54, 591–615.PubMedCrossRefGoogle Scholar
  94. Kaplan, M. S. (1981). NeuroGenesis in the 3-month-old rat visual cortex. J. Comp. Neurol. 195, 323–338.PubMedCrossRefGoogle Scholar
  95. Kaplan, M. S., Hinds, J. W. (1977). NeuroGenesis in the adult rat: Electron microscopic analysis of light raDioautoGraphs. Science 197, 4308 (1092–1094).PubMedCrossRefGoogle Scholar
  96. Kappers, C. U. A., Huber, G. C., Crosby, E. C. (1967). The Comparative Anatomy of the Nervous System of Vertebrates, IncluDinG Man. Vol. II. OriGinally publisheD in 1936. New York: Hafner.Google Scholar
  97. Kiernan, J. A. (1979). Hypotheses concerneD with axonal regeneration in the mammalian nervous system. Biol. Rev. 54, 155–197.PubMedCrossRefGoogle Scholar
  98. Kirsche, W. (1959). HirnreGeneration bei Knochenfischen. Beiheft zum ForschunGsfilm HF 316. Berlin: Verlag Volk und Wissen.Google Scholar
  99. Kirsche, W. (1959/1960). Zur FraGe Der Regeneration Des Mittelhirnes Der Teleostei. Verh. Anat. Ges. 56. Vers. 8, bis 12. April 1959. Jena, VEB Gustav Fischer Verlag, pp. 259–270.Google Scholar
  100. Kirsche, W. (1960). Regeneration im Zentralnervensystem. (Festschrift zur 150-Jahr-Feier Der Humboldt-Universität zu Berlin). Berlin: VEB Deutscher Verlag Der Wissenschaften, pp. 407–438. Forschen und Wirken BanD II.Google Scholar
  101. Kirsche, W. (1965). ReGenerative VorGänGe im Gehirn und Rückenmark. ErGebn. Anat. Entwickl.-Gesch. 38, 143–194.Google Scholar
  102. Kirsche, W. (1967). Über postembryonale Matrixzonen im Gehirn verschieDener Vertebraten und Deren BeziehunG zur Hirnbauplanlehre. Z. Mikrosk.-Anat. Forsch. 77, 313–406.PubMedGoogle Scholar
  103. Kirsche, W. (1970). Weitere Untersuchungen über Das Vorkommen postembryonaler Matrixzonen im Telencephalon einiGer SäuGetiere. Z. Mikrosk.-Anat. Forsch. 82, 122–145.PubMedGoogle Scholar
  104. Kirsche, W. (1971). Über Die BeDeutunG Der postembryonalen Matrixzonen im Gehirn verschieDener Vertebraten für Die HirnreGeneration. In: Reactive and ReGenerative Processes in the Nervous System. Contribution of the Conference. 2–4 December 1968. Tbilisi: Sabcota Sakartvelo, pp. 47–61.Google Scholar
  105. Kirsche, W. (1972). Die EntwicklunG Des Telencephalons Der Reptilien und Deren BeziehunG zur Hirnbauplanlehre. Nova Acta Leopoldina Neue FolGe 204, 1–78. Johann Ambrosius Barth, LeipziG.Google Scholar
  106. Kirsche, W., Kirsche, K. (1961). Experimentelle Untersuchungen zur FraGe Der Regeneration und Funktion Des Tectum opticum von Carassius carassius L. Z. Mikrosk.-Anat. Forsch. 67, 140–182.PubMedGoogle Scholar
  107. Kirsche, K., Kirsche, W. (1963/1964). ReGenerative VorGänGe im Telencephalon von Ambystoma mexicanum. J. Hirnforsch. 6, 421–436.Google Scholar
  108. Kirsche, K., Kirsche, W. (1964). Kompensatorische Hyperplasie und Regeneration im EnDhirn von Ambystoma mexicanum nach Resektion einer Hemisphäre. Z. Mikrosk.-Anat. Forsch. 71, 505–525.PubMedGoogle Scholar
  109. Kirsche, K., Kirsche, W. (1964/1965). Experimentelle Untersuchungen über den Einfluβ Der Regeneration Des Nervus olfactorius auf Die VorDerhirnreGeneration von Ambystoma mexicanum. J. Hirnforsch. 7, 315–333.PubMedGoogle Scholar
  110. Kirsche, K., Kirsche, W. (1968/1969). Über Homotransplantation eines EnDhirnDrittels von Ambystoma mexicanum. Z. Mikrosk.-Anat. Forsch. 79, 223–243.PubMedGoogle Scholar
  111. Kirsche, K., Kirsche, W. (1969). Experimentelle Untersuchungen zur Transplantation einer EnDhirnhemisphäre von Ambystoma mexicanum währenD Der PostembryonalperioDe. Wilhelm Roux’s Arch. 162, 78–94.CrossRefGoogle Scholar
  112. Kirsche, K., Kirsche, W., Richter, W. (1965). Der Einfluβ Der experimentell erzeuGten Metamorphose auf Die reGenerativen VorGänGe im VorDerhirn von Ambystoma mexicanum. Z. Mikrosk.-Anat. Forsch. 74, 69–79.PubMedGoogle Scholar
  113. Koppanyi, T. (1955). Regeneration in the central nervous system of fishes. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C. Thomas, pp. 3–19.Google Scholar
  114. Kosciuszko, H. (1958). The influence of the olfactory nerves on the regeneration of the enDbrain in Xenopus laevis taDpoles. Fol. Biol. Krakow 6, 117–130.Google Scholar
  115. Kranz, D., Richter, W. (1970a). AutoraDioGraphische Untersuchungen über Die Lokalisation Der Matrixzonen Des Diencephalons von Juvenilen und adulten Lebistes reticulatus (Teleostei). Z. Mikrosk.-Anat. Forsch. 82, 42–66.PubMedGoogle Scholar
  116. Kranz, D., Richter, W. (1970b). AutoraDioGrapische Untersuchungen zur DNS-Synthese im Cerebellum und in Der MeDulla oblongata von Teleostiern verschieDenen Lebensalters. Z. Mikrosk.-Anat. Forsch. 82, 264–292.PubMedGoogle Scholar
  117. Kranz, D., Richter, W. (1971). AutoraDioGraphische Untersuchungen zur Regeneration Des Tectum opticum von Lebistes reticulatus (Teleostei). Z. Mikrosk.-Anat. Forsch. 84, 420–428.PubMedGoogle Scholar
  118. Kwiatkowski, C. (1961). Regeneration of transecteD nervous connections in the brain of metamorphoseD Xenopus laevis. Fol. Biol. Krakow 9, 27–41.Google Scholar
  119. Landreth, G. E., AGranoff, B. W. (1979). Expiant culture of adult Goldfish retina: A model for the study of CNS reGeneration. Brain Res. 161, 39–53.PubMedCrossRefGoogle Scholar
  120. Lanners, H. N., Grafstein, B. (1980). Early staGes of axonal regeneration in the Goldfish optic tract: An electron microscopic study. J. Neurocytol. 9, 733–751.PubMedCrossRefGoogle Scholar
  121. Le Gros Clark, W. E. (1940). Neuronal Differentiation in implanteD foetal cortical tissue. J. Neurol. Psychiatr. (London) 3, 263–272.CrossRefGoogle Scholar
  122. Le Gros Clark, W. E. (1942/1943a). The problem of neuronal regeneration in the central nervous system. I. The influence of spinal GanGlia and nerve fraGments Grafted in the brain. J. Anat. (London) 77, 20–48.Google Scholar
  123. Le Gros Clark, W. E. (1942/1943b). The problem of neuronal regeneration in the central nervous system. II. The insertion of peripheral nerve stumps into the brain. J. Anat. (London) 77, 251–259.Google Scholar
  124. LeonaarDt, H. (1972). Elektronenmikroskopische Untersuchungen Der postembryonalen ventralen Matrixzone Des KaninchenGehirns. Z. Mikrosk.-Anat. Forsch. 85, 161–175.Google Scholar
  125. Levi-Montalcini, R. (1955). Neuronal regeneration in vitro. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C. Thomas, pp. 54–65.Google Scholar
  126. Levi-Montalcini, R., Hamburger, V. (1951). Selective Growth stimulation effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 16, 321–362.CrossRefGoogle Scholar
  127. Lindner, G., Grosse, G. (1980). Die NervenGewebekultur als Modell. ErGebn. Exp. MeD. 35, 461–468.Google Scholar
  128. Lindner, G., Grosse, G., Matthies, H., Kirsche, W. (1975). Über Die WirkunG von Hirnextrakt und-hyDrolysat auf Das NervenGewebe unter In-vitro-BeDinGunGen. Z. Mikrosk.-Anat. Forsch. 89, 815–823.PubMedGoogle Scholar
  129. Lombardo, F., Corsini, M. G. (1971). Capacità riGenerative Del cervelletto in adulti Di un Teleosteo. Atti AcaD. Naz. Lincei, Series 8, 259–263.Google Scholar
  130. Lombard, R., Spagna, A. (1970). Capacità riGenerative Del telencefalo in adulti Di un anfibio anuro. Riv. Neurobiol. 16, 111–135.Google Scholar
  131. Lombardo, F., Stefanelli, A. (1966). Prime osservazioni sulle capacità riGenerative Del sistema nervoso in adulti Di Anfibi anuri. Acc. Naz. Lincei, Series 8, 41, 126–129.Google Scholar
  132. Lorente De Nó, R. (1965). Comments on the relation of aGe to capacity for regeneration in amphibians. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C. Thomas, pp. 77–83.Google Scholar
  133. Lotzová, E. Chutná, J. (1966). MorpholoGical study on the Destruction of homoGrafts and heteroGrafts in Anurans. Vestn. Csl. Spolec. Zool. 30, 308–314.Google Scholar
  134. Maliovanova, S. D., Polezhaev, L. V. (1966). On the moDe of regeneration of the forebrain in taDpoles of the Grass froG. In: ConDitions of Regeneration of OrGans and Tissues in Animals (in Russian). Moscow: p. 169.Google Scholar
  135. MarGotta, V., Filoni, S. (1969). Transplantations homoplastiques hétérotopiques De seGments De moelle épinière chez le triton adulte. Phénomènes De DéGénérescence et De réGénération. Arch. Biol. (LièGe) 80, 347–368.Google Scholar
  136. MarGotta, V., Filoni, S. (1970). Ulteriori osservazioni su trapianti autoplastici eD omoplastici Di miDollo spinale in tritoni adulti. Acta Embryol. Exp. No. 3, 151–162.Google Scholar
  137. Marks, A. F. (1972). ReGenerative reconstruction of a tract in a rat’s brain. Exp. Neurol. 34, 455–464.PubMedCrossRefGoogle Scholar
  138. Marón, K. (1963). EnDbrain regeneration in Lebistes reticulatus. Fol. Biol. 11, 3–10.Google Scholar
  139. Matthews, D. A., Cotman, C., Lynch, G. (1976a). An electron microscopic study of lesion-induced synaptoGenesis in the Dentate Gyrus of the adult rat. I. MaGnituDe and time course of Degeneration. Brain Res. 115, 1–21.PubMedCrossRefGoogle Scholar
  140. Matthews, D. A., Cotman, C., Lynch, G. (1976b). An electron microscopic study of lesion-induced synaptoGenesis in the Dentate Gyrus of the adult rat. II. Reppearance of morpholoGically normal synaptic contacts. Brain Res. 115, 23–41.PubMedCrossRefGoogle Scholar
  141. May, R. M., Horvat, J. C. (1965). Réhabitation complète De fraGments De nerfs DéGénérés implantés Dans le cervelet De la souris. In: La Cicatrisation. Colloques Internationaux Du Centre National De la Recherche Scientifique EDitions Du centre national De la recherche scientifique, Paris Nr. Vol. 145, pp. 65–71.Google Scholar
  142. Mepissaschwili, I. S. (1962). The regeneration of the telencephalic hemispheres of young Dogs (in Russian). Trudy Grusinsk Inst. Fizic. Kul’tury Tbilissi 4, 203–215.Google Scholar
  143. Mepisashvili, I. S. (1970/1971). Proliferation, miGration and Differentiation of matrix zone cells of lateral ventricles DurinG the postnatal Development of puppies and reparative reGeneration. J. Hirnforsch. 12, 233–239.PubMedGoogle Scholar
  144. Mepisashvili, I. S. (1982). Role of proliferative and miGration processes in mammalian hemisphere neocortex formation. J. Hirnforsch. 23, 639–645.PubMedGoogle Scholar
  145. Meyer, R. L. (1978). Deflection of selected optic fibers into a Denervated tectum in Goldfish. Brain Res. 155, 213–227.PubMedCrossRefGoogle Scholar
  146. Minelli, G., Del GranDe, P. (1974). Localization and quantitative analysis of the elements leaDinG to the regeneration of the optic tectum in the adult Triturus cristatus carnifex. Z. Mikrosk.-Anat. Forsch. 88, 209–224.PubMedGoogle Scholar
  147. Minelli, G., Del GranDe, P., Mambelli, M. C. (1978). Preliminary study of the reGenerative processes of the Dorsal cortex of the telencephalon of Lacerta virDis. Z. Mikrosk.-Anat. Forsch. 91, 241–246.Google Scholar
  148. Minelli, G., QuaGlia, A. (1968). I rapporti nervosi nel tetto mesencefalico Di Triturus cristatus. Arch. Ital. Anat. Embriol. 73, 203–218.PubMedGoogle Scholar
  149. Oiye, T. (1928). Experimentelle StuDien über Die Regeneration Des GehirnGewebes. Mitt. Pathol. Inst. Univ. SenDai 5, 19–90.Google Scholar
  150. Petrow, W. N., Belowa, L. M. (1963). Über Die Regeneration Des Zentralnervensystems bei Amphibien (russ.). StuDiennotizen Der Charkower Univ. 140:36, 53–54.Google Scholar
  151. Piatt, J. (1955). Regeneration in the central nervous system of amphibia. In: Regeneration in the Central Nervous System. Windle, W. F. (ed.). SprinGfielD, III.: Charles C Thomas, pp. 20–46.Google Scholar
  152. Polezhaev, L. V. (1971). Reparative and physiological regeneration of nervous tissue of the brain in some vertebrates. In: Reactive and ReGenerative Processes in the Central Nervous System (in Russian). Contributions of the conference 2–4 December 1968. Tbilisi: Sabcota Sakartvelo, pp. 142–151.Google Scholar
  153. Polezhaev, L. V. (1972). OrGan Regeneration in Animals. Recovery of OrGan Regeneration Ability in Animals, SprinGfielD, III.: Charles C. Thomas.Google Scholar
  154. Polezhaev, L. V., Karnaukhova, E. N. (1962). Stimulation of physiological regeneration of the nervous tissue of cerebral cortex and its importance for bioGenic therapy of nervous psychoses. In: Clinical and Experimental FounDations of BioGenic Therapy of Psychoses, 2 (in Russian). Moskow: pp. 86-116.Google Scholar
  155. Polezhaev, L. V., Karnaukhova, E. N. (1963). Stimulation of nerve cells multiplication in the cortex of larGe encephalon hemispheres in mammals. Comp. Rend. AcaD. Sci. USSR (in Russian). 150, 430–433.Google Scholar
  156. Polezhaev, L. V., Maliovanova, S. D. (1965). On the origins and mechanism of regeneration of the mesencephalon in taDpoles of Rana temporaria. Comp. Rend. ADa. Sci. USSR (in Russian). 165, 951–954.Google Scholar
  157. Polezhaev, L. V., Reznikov, K. J. (1966). ChanGes in nerve tissue of the cerebral cortex followinG removal of its part in kittens (in Russian). Arch. Anat. Histol. Embryol. 51 H. 12, 9–21.Google Scholar
  158. Puchala, E., Windle, W. F. (1977). The possibility of structural and functional restitution after spinal cord injury. A. Review. Exp. Neurol. 55, 1–42.CrossRefGoogle Scholar
  159. Raisman, G. (1969). Neuronal plasticity in the septal nuclei of the adult rat. Brain Res. 14, 25–48.PubMedCrossRefGoogle Scholar
  160. Raisman, G., Field, P. M. (1973). A quantitative investiGation of the Development of collateral reinnervation after partial Deafferentation of the septal nuclei. Brain Res. 50, 241–264.PubMedCrossRefGoogle Scholar
  161. Ramony Cajal, S. (1928a). Degeneration and ReGeneation of the Nervous System. Vol. I. Traumatic regeneration and regeneration of the nerves. TranslateD and eDiteD by Raoul M. May. New York: Hafner, 1959.Google Scholar
  162. Ramony Cajal, S. (1928b). Degeneration and Regeneration of the Nervous System. Vol. II. Degeneration and regeneration of the nerve centres. TranslateD and eDiteD by Raoul M. May. New York: Hafner, 1959.Google Scholar
  163. Reinis, S. (1965). Contribution to the problem of the regeneration of nerve fibres in the central nervous system after operative DamaGe in the early postnatal perioD. Acta. Anat. (Basel) 60, 165–180.CrossRefGoogle Scholar
  164. Reis, D. J., Ross, R. A., GilaD, G., Joh, H. (1978). Reaction of central catecholaminerGic neurons to injury: Model systems for studyinG the neurobioloGy of central regeneration and sproutinG. In: Neuronal Plasticity. Cotman, C. W. (ed.). New York: Raven Press, pp. 197–226.Google Scholar
  165. Richter, W. (1965). Regeneration im Tectum opticum bei Leucaspius Delineatus (Heckel, 1843). Z. Mikrosk.-Anat. Forsch. 74, 46–68.PubMedGoogle Scholar
  166. Richter, W. (1968a). Regeneration im Tectum opticum bei adulten Lebistes reticulatus (Peters, 1859) (PoeciliDae, CyprinoDontes, Teleostei). J. Hirnforsche. 10, 173–186.Google Scholar
  167. Richter, W. (1968b). ReGenerative VorGänGe nach einseitiGer EntfernunG Des cauDalen EnDhirnabschnittes einschlieβlich Des teloDiencephalen Grenzbereiches bei Amby-stoma mexicanum. J. Hirnforsch. 10, 515–534.PubMedGoogle Scholar
  168. Richter, W. (1968c). Der Einfluβ von RöntGenctrahlen auf Die reGenerativen VorGänGe im Gehirn von Ambystoma mexicanum. Z. Mikrosk.-Anat. Forsch. 79, 316–341.PubMedGoogle Scholar
  169. Richter, W. (1969). Über Die BeziehunGen zwischen HirnreGeneration und MatrixGewebe bei Amphibien. Verh. Anat. Ges. ErG. H. 125, 547–554.Google Scholar
  170. Richter, W. (1970). Regeneration im Telencephalon von Juvenilen und adulten Lebistes reticulatus (Teleostei). Z. Mikrosk.-Anat. Forsch. 81, 345–358.PubMedGoogle Scholar
  171. Richter, W. (1971). Uber Die Regenerationskapazität Des telo-Diencephalen Grenzbereichs bei UroDelen. In: Reactive and ReGenerative Processes in the Central Nervous System. Contributions of the conference 2–4 December 1968. Tbilisi: Sabcota Sakartvelo, pp. 162–170.Google Scholar
  172. Richter, W., Kranz, D. (1970a). AutoraDioGraphische Untersuchungen über Die AbhänGiGkeit Des H3-ThymiDine-InDex vom Lebensalter in den Matrixzonen Des Telencephalons von Lebistes reticulatus (Teleostei). Z. Mikrosk.-Anat. Forsch. 81, 530–534.PubMedGoogle Scholar
  173. Richter, W., Kranz, D. (1970b). Die AbhänGiGkeit Der DNS-Synthese in den Matrixzonen Des Mesencephalons vom Lebensalter Der Versuchstiere (Lebistes reticulatus-Teleostei). AutoraDioGraphische Untersuchungen. Z. Mikrosk.-Anat. Forsch. 82, 76–92.PubMedGoogle Scholar
  174. Richter, W., Kranz, D. (1971). AltersabhänGiGkeit Der Aktivität Der Matrixzonen im Gehirn von Xiphophorus hellen (Teleostei). AutoraDioGraphische Untersuchungen. J. Hirnforsch. 13, 109–116.PubMedGoogle Scholar
  175. Richter, W., Kranz, D. (1977). Über Die BeDeutunG Der Zellproliferation für Die HirnreGeneration bie nieDeren Vertebraten. Verh. Anat. Ges. 71, 439–445.PubMedGoogle Scholar
  176. Richter, W., Kranz, D. (1978). AutoraDioGraphische Untersuchungen zur NeuroGenese und MorphoGenese Der ReGio cinGularis Der Ratte. I. Proliferationsmuster in verschieDenen prae-und postnatalen StaDien. Z. Mikrosk.-Anat. Forsch. 92, 222–240.PubMedGoogle Scholar
  177. Richter, W., Kranz, D. (1979a). AutoraDioGraphische Untersuchungen zur NeuroGenese und MorphoGenese Der ReGio cinGularis Der Ratte. II. Proliferationskinetik in Der Area praecentralis aGranularis. J. Hirnforsch. 20, 391–412.PubMedGoogle Scholar
  178. Richter, W., Kranz, D. (1979b). AutoraDioGraphische Untersuchungen zur NeuroGenese und MorphoGenese Der ReGio cinGularis Der Ratte. III. MiGration und Lamination in den ReGionen Der cinGulären RinDe und in Der Area postcentralis. J. Hirnforsch. 20, 475–505.PubMedGoogle Scholar
  179. Richter, W., Kranz, D. (1979c). AutoraDioGraphische Untersuchungen zur NeuroGenese und MorphoGenese Der ReGio cinGularis Der Ratte. IV. Quantitative Untersuchungen zur ErmittlunG Der ZellursprunGszeiten Der Cortexschichten. J. Hirnforsch. 20, 581–629.PubMedGoogle Scholar
  180. Richter, W., Kranz, D. (1980). AutoraDioGraphische Untersuchungen zur NeuroGenese und MorphoGenese Der ReGio cinGularis Der Ratte. V. Quantitative Untersuchungen Des Ablaufs Der MiGrationsvorGänGe. J. Hirnforsch. 21, 11–37.PubMedGoogle Scholar
  181. Richter, W., Kranz, D. (1981a). AutoraDioGraphische Untersuchungen Der postnatalen Proliferationsaktivität Der Matrixzonen Des Gehirns Der Forelle (Salmo iriDeus). Z. Mikrosk.-Anat. Forsch. 95, 491–520.PubMedGoogle Scholar
  182. Richter, W., Kranz, D. (1981b). AutoraDioGraphische Untersuchungen Der postnatalen Proliferationsaktivität in den Matrixzonen Des Telencephalons und Des Dien-cephalons beim Axolotl (Ambystoma mexicanum), unter BerücksichtiGunG Der Proliferation im olfactorischen OrGan. Z. Mikrosk.-Anat. Forsch. 95, 883–904.PubMedGoogle Scholar
  183. Sala, G. (1909). Über Die RegenerationserscheinunGen im zentralen Nervensystem. Anat. Anz. Jena 34, 193–199.Google Scholar
  184. Schachenmayr, W. (1967). Über Die EntwicklunG von Ependym und Plexus chorioiDeus Der Ratte. Z. Zellforsch. 77, 25–63.PubMedCrossRefGoogle Scholar
  185. Scharrer, B. (1978). Current concepts on the evolution of the neurosecretory neuron. In: Neurosecretion and NeuroenDocrine Activity: VIIth International Symposium on Neurosecretion Leningrad 1976. Berlin/HeiDelberG/New York: SprinGer.Google Scholar
  186. Schimrigh, K. (1966). Über Die WanDstruktur Der Seitenventrikel und Des Dritten Ventrikels beim Menschen. Z. Zellforsch. 70, 1–20.CrossRefGoogle Scholar
  187. Schulz, E. (1969). Zur postnatalen Biomorphose Des Ependyms im Telencephalon von Lacerta agilis agilis (L.). Z. Mikrosk.-Anat. Forsch. 81, 111–152.PubMedGoogle Scholar
  188. Segaar, J. (1960). Etho-physiological experiments with male Gasterosteus aculeatus. In: Structure and Function of the Cerebral Cortex, ProceeDinGs of the Second International Meeting of Neurobiologists, Amsterdam (1959) printed in The Netherlands. Amsterdam: Elsevier, pp. 301–305.Google Scholar
  189. Segaar, J. (1961). Telencephalon and behaviour in Gasterosteus aculeatus. Behaviour 18, 256–287.CrossRefGoogle Scholar
  190. Segaar, J. (1962). Die Funktion Des Vorderhirns in Bezug auf Das angeborene Verhalten Des Dreidornigen Stichlingsmännchens (Gasterosteus aculeatus L.)—zugleich ein Beutrag über Neuronenregeneration im Fischgehirn. Acta Morphol. Neer-lando-Scand. 5, 49–64.Google Scholar
  191. Segaar, J. (1965). Behavioural aspects of Degeneration and regeneration in fish brain: A comparison with hiGher vertebrates. ProG. Brain Res. 14, 143–231.PubMedCrossRefGoogle Scholar
  192. Shimada, M. (1966). Cytokinetics and histoGenesis of early postnatal mouse brain as stuDieD by 3H-thymiDine autoraDioGraphy. Arch. Histol. Jap. 26, 413–437.PubMedGoogle Scholar
  193. Sibbing, W. (1952/1954). Postnatale Regeneration Der verschieDenen Hirnabschnitte bei UroDelen. Roux’s Arch. Entw. Mech. 146, 433–486.CrossRefGoogle Scholar
  194. Singer, M., SchaDé, J. P. (1964). Mechanisms of neural reGeneration. ProGress in Brain Research 13. Amsterdam/New York: Elsevier.Google Scholar
  195. Sosa, J. M., Savio De Sosa, H. M. (1972). The multiplication of nerve cells by amitotic Division DurinG extrauterine life in mammals. Acta Anat. 82, 579–605.PubMedCrossRefGoogle Scholar
  196. Spatz, H. (1930). MorpholoGische GrunDlaGen Der Restitution im Zentralnervensystem. Dtsch. Zschr. Nervenh. 15, 197–231.CrossRefGoogle Scholar
  197. Srebro, Z. (1957). ReGeneracJa kresomòzGovia u kiJanek “Xenopus laevis.” Fol. Biol. Krakow. 5, 211–231.Google Scholar
  198. Srebro, Z. (1965). EnDbrain regeneration in adult Xenopus laevis. Fol. Biol. Krakow. 13, 269–280.Google Scholar
  199. Staudt, J., Stüber, P. (1977). MorpholoGische Untersuchungen Der Matrix im Bereich Des Hypothalamus beim Menschen. Z. Mikrosk.-Anat. Forsch. 91, 773–786.PubMedGoogle Scholar
  200. Stenevi, U., Björklund, A., Svendgaard, N. A. (1976). Transplantation of central and peripheral monoamine neurons to the adult rat brain: Techniques and conditions for survival. Brain Res. 114, 1–20.PubMedCrossRefGoogle Scholar
  201. Stevenson, J. A., Yoon, M. G. (1978). Regeneration of optic nerve fibers enhances cell proliferation in the Goldfish optic tectum. Brain Res. 153, 345–351.PubMedCrossRefGoogle Scholar
  202. Stevenson, J. A., Yoon, M. G. (1980). Kinetics of cell proliferation in the halveD tecturn of adult Goldfish. Brain Res. 184, 11–22.PubMedCrossRefGoogle Scholar
  203. Stroebe, H. (1895). Die allGemeine HistoloGie Der DeGenerativen und reGenerativen Prozesse im zentralen und peripheren Nervensystem nach neuesten ForschunGen. Zb. AllG. Pathol. 6, 849–960.Google Scholar
  204. Tandon, K. K., Sharma, S. Ch. (1964). On the Degeneration and regeneration of optic nerve fibres with return of vision in Danio rerio (HAM). Proc. InDian AcaD. Sci. (BanGalore) 60, 287–292.Google Scholar
  205. Tidd, C. W. (1932). The transplantation of spinal GanGlia in the white rat. A study of the morpholoGical chanGes in survivinG cells. J. Comp. Neurol. 55, 531–543.CrossRefGoogle Scholar
  206. Tielen, A. M., De Both, N. J., Lopes Da Silva, F. H., Storm von Leuwen, W. (1969). EvokeD responses to light flashes recorDeD from brain in normal and transplanteD axolotl heaDs. Report 1.5.63/2, 1-13.Google Scholar
  207. Torskaya, I. V. (1963). Phenomena of amitotic Division of nerve cells of the central nervous system in adult Dogs (russ.). Physiol. J. 9:H.1, 34–41.Google Scholar
  208. Torskaya, I. V. (1968). Destructive and restorative processes in the Ammon’s horn. In: Reactive and ReGenerative Processes in the Nervous System (in Russian). Tbilisi, 58.Google Scholar
  209. Torskaya, I. V. (1970). PolyploiDization of hippocampal neurons as a manifestation of General aDaptation capabilities of neurons. IX. Int. ConG. Anat. (Leningrad, AuGust 1970). Moscow.Google Scholar
  210. Varon, S. (1977). Neural Growth and reGeneration: A cellular perspective. Exp. Neurol. 54, 1–6.PubMedCrossRefGoogle Scholar
  211. Veraa, R. P., Grafstein, B., Ross, R. A. (1979). Cellular mechanisms in axonal Growth. Exp. Neurol. 64, 649–698.PubMedCrossRefGoogle Scholar
  212. Weissfeiler, J. (1924). RéGénération Des lobes olfactifs et Des hémisphères cérébraux chez les bactraciens uroDèles. Comp. Rend. Soc. Biol. (Paris) 91, 543–544.Google Scholar
  213. Weissfeiler, J. (1925). RéGénération Du cerveau et Du nerf olfactif chez les bactraciens urcDèles. Rev. Suiss. Zool. 32, 1–43.Google Scholar
  214. Wenzel, J., Bärlehner (1969/1970). Zur Regeneration Des Cortex cerebri bei Mus musculus. II. MorpholoGische BefunDe reGenerativer VorGänGe nach Replantation eines Cortexabschnittes. Z. Mikrosk.-Anat. Forsch. 81, 32–70.PubMedGoogle Scholar
  215. Wenzel, J., Bärlehner, E., Wenzel, M., Ilius, D. (1969/1970). Zur Regeneration Des Cortex cerebri bei Mus musculus. I. MorpholoGische BefunDe reGenerativer VorGänGe nach Extirpation eines Cortexabschnittes. Z. Mikrosk.-Anat. Forsch. 81, 1–31.PubMedGoogle Scholar
  216. Wenzel, J., Kammerer, E., Kirsche, W., Matthies, H., Wenzel, M. (1980). Electron microscopic and morphometric studies on synaptic plasticity in the hippocampus of the rat followinG conDitioninG. J. Hirnforsch. 21, 647–654.PubMedGoogle Scholar
  217. Wenzel, J., Kammerer, E., Duwe, G., Matthies, H., Kirsche, W. (1981). Der Einfluss Der KonDitionierunG auf Die ultrastrukturelle VerteilunG Dersynaptischen Vesikel im Hippocampus Der Ratte. J. Hirnforsch. 22, 453–463.PubMedGoogle Scholar
  218. Wiener, F. K. (1954/1955). Mittelhirnfunktion bei UroDelen nach Regeneration und Transplantation. Roux’ Arch. Entw. Mech. 147, 560–633.CrossRefGoogle Scholar
  219. Windle, W. F. (1955). Regeneration in the Central Nervous System. SprinGfielD, III.: Charles C. Thomas.Google Scholar
  220. Winkelmann, E., Henkel, E. (1966). Die WirkunG von Colchicin auf Die RückenmarksreGeneration von Ambystoma mexicanum nach Exstirpation eines kleinen Abschnittes. J. Hirnforsch. 8, 431–436.PubMedGoogle Scholar
  221. Winkelmann, E., Marx, I. (1969). Experimentelle Untersuchungen über Die mikro-skopischen und submikroskopischen VeränDerunGen im Telencephalon von Ambystoma mexicanum nach Resektion Des RiechorGans. Z. Mikrosk.-Anat. Forsch. 81, 71–95.PubMedGoogle Scholar
  222. Winkelmann, E., Winkelmann, A. (1970). Experimentelle Untersuchungen zur Regeneration Des Telencephalon von Ambystoma mexicanum nach Resektion beiDer Hemisphären. Z. Mikrosk.-Anat. Forsch. 82, 149–171.PubMedGoogle Scholar
  223. Wolburg, H. (1981a). Axonal transport, Degeneration, and regeneration of the visual system of the Goldfish. ADvan. Anat. Embryol. Cell Biol. 67, 1–94.CrossRefGoogle Scholar
  224. Wolburg, H. (1981b). Myelination and remyelination in the reGeneratinG visual system of the Goldfish. Exp. Brain Res. 43, 199–206.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Walter Kirsche
    • 1
  1. 1.Anatomical Institute (Charite)Humboldt University of BerlinBerlinGerman Democratic Republic

Personalised recommendations