Meiotic Gene Conversion in Yeast: Molecular and Experimental Perspectives

  • Seymour Fogel
  • Robert K. Mortimer
  • Karin Lusnak
Part of the Springer Series in Molecular Biology book series (SSMOL)


Overall, our understanding of the molecular events comprising gene conversion and genetic recombination is reasonably complete. Both phenomena can be accommodated within a unified theoretical framework based on the known structure and behavior of DNA molecules. Critical evidence drawn primarily from genetic investigations in fungi amenable to tetrad or octad analysis constitute the principal data bases. These are enhanced equally by structural analysis, at the electron microscope level, of recombination intermediates recovered from intact cells and the characterization of enzymes coded for by DNA sequences that are involved in bacterial and viral recombination.


Cold Spring Harbor Gene Conversion Meiotic Recombination Genetic Recombination Marker Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baltimore, D. (1981). Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594.PubMedCrossRefGoogle Scholar
  2. Bassel, J., Mortimer, R. K. (1971). Genetic order of the galactose structural genes in Saccharomyces cerevisiae. J. Bacteriol. 108:179.PubMedGoogle Scholar
  3. Boon, T., Zinder, N. D. (1971). A mechanism for genetic recombination generating one parent and one recombinant. Proc. Natl. Acad. Sci. USA 64:573.CrossRefGoogle Scholar
  4. Botstein, D., Davis, R. W. (1982). Principles and practice of recombinant DNA research with yeast. In: The Molecular Biology of the Yeast Saccharomyces. II. Metabolism and Gene Expression, edited by J. Strathern et al. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.: in press.Google Scholar
  5. Case, M. E., Giles, N. H. (1958). Evidence from tetrad analysis for both normal and abnormal recombination between allelic mutants in Neurospora crassa. Proc. Natl. Acad. Sci. USA 44:378.PubMedCrossRefGoogle Scholar
  6. Case, M. E., Giles, N. H. (1959). Recombination mechanisms at the pan-2 locus in Neurospora crassa. Cold Spring Harbor Symp. Quant. Biol. 23:119.Google Scholar
  7. Case, M. E., Giles, N. H. (1964). Allelic recombination in Neurospora: tetrad analysis of a three-point cross within the pan-2 locus. Genetics 49:529.PubMedGoogle Scholar
  8. Catcheside, D. G. (1975). Occurrence in wild strains of Neurospora crassa of genes controlling genetic recombination. Aust. J. Biol. Sci. 28:213.PubMedGoogle Scholar
  9. Clark, A. J. (1974). Progress toward a metabolic interpretation of genetic recombination of E. coli and bacteriophage lambda. Genetics 78:259.PubMedGoogle Scholar
  10. Clarke, L., Carbon, J. (1978). Functional expression of cloned yeast DNA in Escherichia coli: Specific complementation of arginino succinase lyase (arg H) mutations. J. Mol. Biol. 120:517.PubMedCrossRefGoogle Scholar
  11. Davidow, L., Goetsch, L., Byers, B. (1979). Genetic basis and consequences of a reversible thermal arrest of yeast meiosis at pachytene. Molecular Biology of Yeast (abstracts), August 1979. Cold Spring Harbor Laboratory, N.Y.Google Scholar
  12. Di Caprio, L., Hastings, P. J. (1976). Gene conversion and intragenic recombination at the SUP6 locus and the surrounding region in Saccharomyces cerevisiae. Genetics 811:697.Google Scholar
  13. Egel, R. (1981). Intergenic conversion and reiterated genes. Nature 290:191–192.PubMedCrossRefGoogle Scholar
  14. Emerson, S. (1969). Linkage and recombination at the chromosome level. In: Genetic Organization, edited by E. W. Caspari, A. W. Ravin. New York: Academic Press, p. 267.Google Scholar
  15. Esposito, M. S. (1967). X-ray and meiotic fine structure mapping of the adenine-8 locus in Saccharomyces cerevisiae. Genetics 58:507.Google Scholar
  16. Esposito, M. S. (1971). Post-meiotic segregation in Saccharomyces. Mol. Gen. Genet. 111:297.PubMedCrossRefGoogle Scholar
  17. Esposito, M. S. (1978). Evidence that spontaneous mitotic recombination occurs at the two-strand stage. Proc. Nat. Acad. Sci. USA 75:4436–4440.PubMedCrossRefGoogle Scholar
  18. Esposito, M. S., Esposito, R. E. (1977). Gene conversion, paramutations and controlling elements: A treasury of exceptions. In: Cell Biology, a Comparative Treatise, edited by L. Goldstein, D. M. Prescott, Vol 1. New York: Academic Press, p. 59.Google Scholar
  19. Esposito, M. S., Wagstaff, J. E. (1981). Mechanisms of mitotic recombination. In: The Molecular Biology of the Yeast Saccharomyces, edited by J. Strathern, E. Jones, J. Broach. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory, in press.Google Scholar
  20. Esser, K., Kunnen, R. (1967). Genetics of Fungi, translated by E. Steiner. New York: Springer-Verlag.Google Scholar
  21. Fincham, J. R. S., Day, P. R., Radford, A. (1979). Fungal Genetics, 4th ed. Berkeley: University of California Press.Google Scholar
  22. Fink, G. R. (1974). Properties of gene conversion of deletions in Saccharomyces cerevisiae. In: Mechanisms in Recombination, edited by R. Grell. New York: Plenum Press, p. 287.Google Scholar
  23. Fink, G. R., Styles, C. (1974). Gene conversion of deletions in the his4 region of yeast. Genetics 77:31.Google Scholar
  24. Fogel, S., Hurst, D. D. (1967). Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57:455.PubMedGoogle Scholar
  25. Fogel, S., Mortimer, R. K. (1968). Meiotic gene conversion of nonsense mutations in yeast tetrads. Proc. Int. Cong. Genet. 1:6.Google Scholar
  26. Fogel, S., Mortimer, R. K. (1969). Informational transfer in meiotic gene conversion. Proc. Natl. Acad. Sci. USA 62–96.Google Scholar
  27. Fogel, S., Mortimer, R. K. (1970). Fidelity of gene conversion in yeast. Mol. Gen. Genet. 109:177.CrossRefGoogle Scholar
  28. Fogel, S., Mortimer, R. K. (1971). Recombination in yeast. Ann. Rev. Genet. 5:219.PubMedCrossRefGoogle Scholar
  29. Fogel S., Hurst, D. D., Mortimer, R. K. (1971). Gene conversion in unselected tetrads from multipoint crosses. Stadler Genet. Symp. 2:89.Google Scholar
  30. Fogel, S., Mortimer, R. K., Lusnak, K., Taveres, F. (1979). Meiotic Gene Conversion: A Signal of the Basic Recombination Event in Yeast. Cold Spring Harbor Symp. Quant. Biol. 43:1325.PubMedGoogle Scholar
  31. Fogel, S., Mortimer, R. K., Lusnak, K. (1981). Mechanisms of meiotic gene conversion, or “Wanderings on a foreign strand.” In: Molecular Biology of the Yeast Saccharomyces, edited by J. N. Strathern, E. Jones, J. R. Broach. Cold Spring Harbor Laboratory, N.Y., pp. 289–339.Google Scholar
  32. Fogel, S., Choi, T., Kilgore, D., Lusnak, K., Williamson, M. (1982). The molecular genetics of nontandum duplications at ADE8 in yeast. Rec. Adv. Yeast Molec. Biol. 1:269–288.Google Scholar
  33. Game, J. C., Lamb, T. J., Braun, R. J., Rernick, M. A., Roth, R. M. (1980). The role of radiation (rad) genes in meiotic precombination in yeast. Genetics 94:51–68.PubMedGoogle Scholar
  34. Ghikas, A., Lamb, B. C. (1977). The detection, in unordered octads, of 6+:2m and 2+:6m ratios with postmeiotic segregation, and of aberrant 4:4s, and their use in corresponding-site interference studies. Genet. Res. 29:267.PubMedCrossRefGoogle Scholar
  35. Goldman, S. L. (1974). Studies on the mechanism of the induction of the site-specific recombination in the ade-6 locus of Schizosaccharomycespombe. Genetics 132:347.Google Scholar
  36. Golin, J. E., Esposito, M. S. (1977). Evidence for joint genic control of spontaneous mutation and genetic recombination in Saccharomyces. Molec. Gen. Genet. 150:127–135.PubMedCrossRefGoogle Scholar
  37. Grell, R. F., ed. (1974). Mechanisms in Recombination. New York: Plenum Press.Google Scholar
  38. Gutz, H. (1971). Site specific inductions of gene conversion in Schizosaccharomyces pombe. Genetics 69:317.PubMedGoogle Scholar
  39. Haber, J. E., Rogers, D. T., McCusker, J. H. (1980). Homothallic conversions of yeast mating-type gene occur by intrachromosomal recombination. Cell 22:277–289.PubMedCrossRefGoogle Scholar
  40. Hastings, P. J. (1975). Some aspects of recombination in eukaryotic organisms. Annu. Rev. Genet. 9:129.PubMedCrossRefGoogle Scholar
  41. Hastings, P. J., Kalogeropoulos, A., Rossignol, J. L. (1980). Restoration to the parental genotype of mismatches formed in recombinant DNA heteroduplex. Curr. Genet. 2:169.CrossRefGoogle Scholar
  42. Hawthorne, D. C. (1969). Identification of nonsense codons in yeast. J. Mol. Biol. 43:71.PubMedCrossRefGoogle Scholar
  43. Hicks, J. B., Hinnen, A., Fink, G. R. (1979). Properties of yeast transformation. Cold Spring Harbor Symp. Quant. Biol. 43:1305.PubMedGoogle Scholar
  44. Hicks, J. B., Strathern, J. N., Herskowitz, I. (1977). The cassette model of mating-type interconversion. In: DNA Insertion Elements, Plasmids, and Episomes, edited by A. Bukhari et al. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory.Google Scholar
  45. Hicks, J. B., Strathern, J. N., Klar, A. J. S. (1979). Transposable mating-type genes in Saccharomyces cerevisiae. Nature 282:478.PubMedCrossRefGoogle Scholar
  46. Hinnen, A., Hicks, J., Fink, G. R. (1978). Transformation in yeast. Proc. Natl. Acad. Sci. USA 75:1929.PubMedCrossRefGoogle Scholar
  47. Holliday, R. (1964). A mechanism for gene conversion in fungi. Genet. Res. 5:282.CrossRefGoogle Scholar
  48. Holliday, R. (1974). Molecular aspects of genetic exchange and gene conversion. Genetics 78:273.PubMedGoogle Scholar
  49. Hotchkiss, R. D. (1974). Models of genetic recombination. Ann. Rev. Microbiol. 28:445.CrossRefGoogle Scholar
  50. Hurst, D. D., Fogel, S., Mortimer, R. K. (1972). Conversion associated recombination in yeast. Proc. Natl. Acad. Sci. U.S.A. 69:101.PubMedCrossRefGoogle Scholar
  51. Jackson, J. A., Fink, G. R. (1981). Gene conversion between duplicated genetic elements in yeast. Nature 292:306.PubMedCrossRefGoogle Scholar
  52. Kalogeropoulos, A., Rossignol, J. L. (1980). Evidence for independent mismatch corrections along the same hybrid DNA tract during meiotic recombination in Ascobolus. Heredity 45:263.CrossRefGoogle Scholar
  53. Kitani, Y. (1978). Aberrant 4:4 segregation. Jpn. J. Genet. 53:301.CrossRefGoogle Scholar
  54. Kitani, Y., Olive, L. S. (1967). Genetics of Sordaria fimicola. VI. Gene conversion at the g locus in mutant wild-type crosses. Genetics 57:767.PubMedGoogle Scholar
  55. Kitani, Y., Olive, L. S., El-Ani, A. S. (1962). Genetics of Sordaria fimicola. V. Aberrant segregation at the g locus. Amer. J. Bot. 49:697.CrossRefGoogle Scholar
  56. Klapholz, S., Esposito, R. E. (1980a). Isolation of spo 12–1 and spo 13–1 from a single meiotic division. Genetics 96:567.PubMedGoogle Scholar
  57. Klapholz, S., Esposito, R. E. (1980b). Recombination and chromosome segregation during the single meiosis in spo 12–1 and spo 13–1 diploids. Genetics 96:589.PubMedGoogle Scholar
  58. Klar, A. J. S., Fogel, S., MacLeod, K. (1979). MAR-1 A regulator of HMa and HM in Saccharomyces cerevisiae. Genetics 93:37–50.PubMedGoogle Scholar
  59. Klein, H. L., Petes, T. D. (1980). Intrachromosomal gene conversion in yeast. Nature 289:144.CrossRefGoogle Scholar
  60. Korch, C. T., Snow, R. (1973). Allelic complementation in the first gene of histidine biosynthesis in Saccharomyces cerevisiae. Genetics 74:287.PubMedGoogle Scholar
  61. Kunz, B. A., Haynes, R. H. (1981). Phenomenology and genetic control of mitotic recombination in yeast. Ann. Rev. Genet, edited by H. C. Roman. In press.Google Scholar
  62. Kushev, V. (1974). Mechanisms of Genetic Recombination (translated by B. Haigh). New York: Plenum Press.Google Scholar
  63. Lamb, B. C. (1972). 8:0, 0:8, 7:1 and 1:7 conversion ratios in octads from wild-type mutant crosses of Ascobolus immersus. Heredity 29:397.Google Scholar
  64. Lamb, B. C., Wickramaratne, M. R. T. (1973). Corresponding site interference, synaptinemal complex structure, and 8+:0m and 7+:1m octads from wild-type mutant crosses of Ascobolus immersus. Genet. Res. 22:113.CrossRefGoogle Scholar
  65. Lawrence, C., Sherman, W., Jackson, M., Gilmore, R. A. (1975). Mapping and gene conversion studies with the structural gene for iso-1-cytochrome c in yeast. Genetics 81:615.PubMedGoogle Scholar
  66. Leblon, G. (1972). Mechanism of gene conversion in Ascobolus immersus. I. Existence of a correlation between the origin of mutants induced by different mutagens and their conversion spectrum. Mol. Gen. Genet. 115:36.CrossRefGoogle Scholar
  67. Leblon, G., Rossignol, J. L. (1973). Mechanism of gene conversion in Ascobolus immersus. III. The interaction of heteroalleles in the conversion process. Mol. Gen. Genet. 122:165.PubMedCrossRefGoogle Scholar
  68. Maloney, D. H., Fogel, S. (1980). Mitotic recombination in yeast: isolation and characterization of mutants with enhanced spontaneous mitotic gene conversion rates. Genetics 94:825–839.PubMedGoogle Scholar
  69. Manney, R. R., Mortimer, R. K. (1964). Allelic mapping in yeast by X-ray induced mitotic reversion. Science 143:581.PubMedCrossRefGoogle Scholar
  70. Meselson, M. S., Radding, C. M. (1975). A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358.PubMedCrossRefGoogle Scholar
  71. Moore, C., Sherman, F. (1974). Lack of correspondence between genetic and physical distance in the iso-1-cytochrome c gene in yeast. In: Mechanisms of Recombination, edited by R. Grell. New York: Plenum Press, p. 295.Google Scholar
  72. Moore, C., Sherman, F. (1975). The role of DNA sequences in genetic recombination in the iso-1-cytochrome c gene in yeast. I. Discrepancies between physical distance and genetic distances by fine structure mapping procedures. Genetics 79:397.PubMedGoogle Scholar
  73. Mortimer, R. K., Fogel S. (1974). Genetical interference and gene conversion. In: Mechanisms in Recombination, edited by R. Grell. New York: Plenum Press, p. 236.Google Scholar
  74. Mortimer, R. K., Hawthorne, D. C. (1969). Yeast genetics. In: The Yeasts, Vol. I, edited by A. H. Rose, J. S. Harrison, New York: Academic Press, p. 385.Google Scholar
  75. Mortimer, R. K., Hawthorne, D. C. (1973). Genetic mapping in Saccharomyces. IV. Mapping of temperature-sensitive genes and use of disomic strains in localizing genes and fragments. Genetics 74:33.PubMedGoogle Scholar
  76. Mortimer, R. K., Schild, D. (1980). Genetic map of Saccharomyces cerevisiae. Microbiol. Rev. 44:519.PubMedGoogle Scholar
  77. Nagylaki, T., Petes, T. D. (1982). Intrachromosomal gene conversion and the maintenance of sequence homogeneity among repeated genes. Genetics, in press.Google Scholar
  78. Nasmyth, K. A., Tatchell, K. (1980). The structure of the transposable yeast mating type loci. Cell 19:753.PubMedCrossRefGoogle Scholar
  79. Nicolas, A. (1979). Variation of gene conversion and intragenic combination frequencies in the genome of Ascobolus immersus. Mol. Gen. Genet. 176:129.PubMedCrossRefGoogle Scholar
  80. Paquette, J. (1978). Detection of aberrant 4:4 asci in Ascobolus immersus. Can. J. Genet. Cytol. 20:9.Google Scholar
  81. Paszewski, A. (1970). Gene conversion: Observations on the DNA hybrid models. Genet. Res. 11:55.CrossRefGoogle Scholar
  82. Petes, T. D. (1980a). Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765.PubMedCrossRefGoogle Scholar
  83. Petes, T. D. (1980b). Molecular genetics of yeast. Ann. Rev. Biochem. 49:845–919.PubMedCrossRefGoogle Scholar
  84. Pukkila, P. (1977). Biochemical analysis of genetic recombination in eukaryotes. Heredity 39:193.PubMedCrossRefGoogle Scholar
  85. Radding, C. M. (1973). Molecular mechanisms in genetic recombination. Ann. Rev. Genet. 7:87.PubMedCrossRefGoogle Scholar
  86. Radding, C. M. (1979). The mechanism of conversion of deletions and insertions. Cold Spring Harbor Symp. Quant. Biol. 43:1315.PubMedGoogle Scholar
  87. Resnick, M. A. (1979). The induction of molecular and genetic recombination in eukaryotic cells. Adv. Radiat. Biol. 8:175.Google Scholar
  88. Rodarte-Ramon, M. S., Mortimer, R. K. (1972). Radiation induced recombination in Saccharomyces: isolation and genetic study of recombination deficient mutants. Radiat. Res. 49:133–147.PubMedCrossRefGoogle Scholar
  89. Roman, H. L. (1957). Studies of gene mutation in Saccharomyces. Cold Spring Harbor Symp. Quant. Biol. 21:175.Google Scholar
  90. Roman, H. L. (1980). Recombination in diploid vegetative cells of Saccharomyces cerevisiae. Carlsberg Res. Commun. 45:1315CrossRefGoogle Scholar
  91. Roman, H. L., Jacob, F. (1958). A comparison of spontaneous and ultraviolet-induced allelic recombinations with reference to the recombination of outside markers. Cold Spring Harbor Symp. Quant. Biol. 23:155.PubMedGoogle Scholar
  92. Rossignol, J. L., Haedens, V. (1980). Relationship between asymmetrical and symmetrical hybrid DNA formations during meiotic recombination. Curr. Genet. 1:185.CrossRefGoogle Scholar
  93. Rossignol, J. L., Paquette, N., Nicolas, A. (1979). Aberrant 4:4 asci, disparity in the direction of conversion, and the frequency of conversion in Ascobolus immersus. Cold Spring Harbor Symp. Quant. Biol. 43:1343.Google Scholar
  94. Sang, J., Whitehouse, H. L. K. (1979). Genetic recombination at the buff spore colour locus in Sordaria brevicollis. Mol. Gen. Genet. 174:327.CrossRefGoogle Scholar
  95. Scherer, S., Davis, R. W. (1980). Recombination of dispersed repeated DNA sequences in yeast. Science 209:1380.PubMedCrossRefGoogle Scholar
  96. Stadler, D. R. (1973). The mechanism of intragenic recombination. Ann. Rev. Genet. 7:113.PubMedCrossRefGoogle Scholar
  97. Stadler, D. R., Towe, A. M. (1963). Recombination of allelic cysteine mutants in Neurospora. Genetics 48:1323.PubMedGoogle Scholar
  98. Stadler, D. R., Towe, A. M. (1971). Evidence for meiotic recombination in Ascobolus involving only one member of tetrad. Genetics 68:401.PubMedGoogle Scholar
  99. Stahl, F. W. (1969). One way to think about gene conversion. Genetics (Suppl.) 61:1.PubMedGoogle Scholar
  100. Stahl, F. W. (1978). Summary. Cold Spring Harbor Symp. Quant. Biol. 43:1353.Google Scholar
  101. Stahl, F. W. (1979a). Special sites in recombination. Ann. Rev. Genet. 13:7.PubMedCrossRefGoogle Scholar
  102. Stahl, F. W. (1979b). Genetic recombination. Thinking about it in phage and fungi. San Francisco: Freeman.Google Scholar
  103. Stinchcomb, D. T., Struhl, K., Davis, R. W. (1979). Isolation and characterization of a yeast chromosomal replicator. Nature 282:39–43.PubMedCrossRefGoogle Scholar
  104. Struhl, K., Stinchcomb, D. T., Scherer, S., Davis, R. W. (1979). High frequency transformation of yeast: Autonomous replication of DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039.PubMedCrossRefGoogle Scholar
  105. Szostak, J. W., Wu, R. (1980). Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 84:426.CrossRefGoogle Scholar
  106. Wagner, R. E., Radman, M. (1975). A mechanism for initiation of genetic recombination. Proc. Natl. Acad. Sci. USA 72:3619.PubMedCrossRefGoogle Scholar
  107. Whitehouse, H. L. K. (1963). A theory of crossing over by means of hybrid deoxyri-bonucleic acid. Nature 199:1034.PubMedCrossRefGoogle Scholar
  108. Whitehouse, H. L. K. (1969). Towards an understanding of the mechanism of heredity, 2nd ed. New York: St. Martin’s Press.Google Scholar
  109. Wickramaratne, M. R. T., and Lamb, B. C. (1978). The estimation of conversion parameters and the control of conversion in Ascobolus immersus. Mol. Gen. Genet. 159:63.CrossRefGoogle Scholar
  110. Williamson, M., Fogel, S. (1980). Correction deficient (cor) mutants that alter the frequency and length of correction tracts in meiotic hybrid DNA. In: Tenth International Conference on Yeast Genetics and Molecular Biology, no. 135, Louvain-la-Neuve, Belgium: p. 44.Google Scholar
  111. Yu-Sun, C. C., Wickramaratne, M. R. T., Whitehouse, H. L. K. (1977). Mutagen specificity in conversion pattern in Sordaria brevicollis. Genet. Res. 29:65.CrossRefGoogle Scholar
  112. Zimmerman, F. K. (1968). Enzyme studies on the products of mitotic gene conversion in Saccharomyces cerevisiae. Genetics 101:171.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Seymour Fogel
    • 1
  • Robert K. Mortimer
    • 2
  • Karin Lusnak
    • 1
  1. 1.Department of GeneticsUniversity of CaliforniaBerkeleyUSA
  2. 2.Department of Biophysics and Medical PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations