Yeast Genetics pp 371-419 | Cite as

ScV “Killer” Viruses in Yeast

  • Diane J. Mitchell
  • E. Alan Bevan
Part of the Springer Series in Molecular Biology book series (SSMOL)


Certain strains of the yeast Saccharomyces cerevisiae secrete a proteinaceous toxin, the killer toxin, which is lethal to other strains of the same species. Toxin-producing strains are termed killers and susceptible strains are termed sensitives.


Versus Versus Versus Versus Versus Killer Toxin Maintenance Gene Yeast Killer dsRNA Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, J. M., Cory, S. (1975). Modified nucleotides and bizarre 5′-termini in mouse myeloma mRNA. Nature New Biol. 255:28–33.Google Scholar
  2. Adler, J., Mackenzie, D. W. R. (1972). Abst. Ann. Meet. Amer. Soc. Microbiol, p. 8.Google Scholar
  3. Adler, J., Wood, H. A., Bozarth, R. F. (1976). Virus-like particles from killer, neutral, and sensitive strains of Saccharomyces cerevisiae. J. Virol. 17:472–476.PubMedGoogle Scholar
  4. Aigle, M., Lacroute, F. (1975). Genetic aspects of {URE 3}, a non-mitochondrial cytoplasmically inherited mutation in yeast. Mol. Gen. Genet. 136:327–335.PubMedGoogle Scholar
  5. Al-Aidroos, K., Bussey, H. (1978). Chromosomal mutants of Saccharomyces cerevisiae affecting the cell wall binding site for killer factor. Can. J. Micro biol. 24:228–237.Google Scholar
  6. Al-Aidroos, K., Somers, J. M., Bussey, H. (1973). Retention of cytoplasmic killer determinants in yeast cells after removal of mitochondrial DNA by ethidium bromide. Mol. Gen. Genet. 122:323–330.PubMedGoogle Scholar
  7. Alwine, J. C., Kemp, D. J., Stark, G. R. (1977). Method for detection of specific RNAs in agarose gels by transfer to diazobenyloxy-methyl-paper and hybridisation with DNA probes. Proc. Nat. Acad. Sci. USA 74:5350–5354.PubMedGoogle Scholar
  8. Berry, E. A., Bevan, E. A. (1972). A new species of double-stranded RNA from yeast. Nature New Biol. 239:279–280.Google Scholar
  9. Bevan, E. A., Herring, A. J. (1976). The killer character in yeast: preliminary studies of virus-like particle replication. In: Genetics, Biogenetics and Bioenergetics of Mitochondria, edited by R. J. Bandelow, D. Y. Schweyen, K. Thomas, K. Wolf, F. Kaudewitz, pp. 153–162. Berlin: De Gruyter.Google Scholar
  10. Bevan, E. A., Makower, M. (1963). The physiological basis of the killer character in yeast. In: Genetics Today, XIth Int. Congr. Genet., Vol. 1, edited by S. J. Geerts, pp. 202–203. Oxford: Pergamon Press.Google Scholar
  11. Bevan, E. A., Mitchell, D. J. (1979). The killer system in yeast. In: Viruses and Plasmids in Fungi, edited by P. A. Lemke, pp. 161–169. New York: Marcel Dekker.Google Scholar
  12. Bevan, E. A., Somers, J. M. (1969). Somatic segregation of the killer (k) and neutral (n) cytoplasmic genetic determinants in yeast. Genet. Res. 14:71–77.Google Scholar
  13. Bevan, E. A., Somers, J. M., Theivendirarajah, K. (1969). In: Proceedings XIth International Botanical Congress (Seattle), p. 14.Google Scholar
  14. Bevan, E. A., Herring, A. J., Mitchell, D. J. (1973). Preliminary characterisation of two species of dsRNA in yeast and their relationship to the “killer” character. Nature 245:81–86.PubMedGoogle Scholar
  15. Blobel, G., Dobberstein, B. (1975). Transfer of proteins across membranes. I. J. Cell Biol. 67:835–851.Google Scholar
  16. Bostian, K. A., Hopper, J. E., Rogers, D. J., Tipper, D. J. (1980a). Translational analysis of the killer-associated virus-like particle dsRNA genome of S. cerevisiae. M dsRNA encodes toxin. Cell 19:403–414.PubMedGoogle Scholar
  17. Bostian, K. A., Sturgeon, J. A., Tipper, D. J. (1980b). Encapsidation of yeast killer double-stranded ribonucleic acid: Dependence of M on L. J. Bacteriol. 143:463–470.PubMedGoogle Scholar
  18. Bostian, K. A., Burn, V. E., Jayachandran, S., Tipper, D. J. (1982a). Yeast killer dsRNA plasmids are transcribed in vivo to produce full and partial-length plus-stranded RNAs: models for their synthesis and for the functional sequence of Mr dsRNA. Cell, in press.Google Scholar
  19. Bostian, K. A., Jayachandran, S., Tipper, D. J. (1982b). A glycosylated protoxin in killer yeast: models for its structure and maturation. Cell, in press.Google Scholar
  20. Botcham, M., Topp, W., Sambrook, J. (1976). The arrangement of simian virus 40 sequences in the DNA of transformed cells. Cell 9:269–287.Google Scholar
  21. Brennan, V. E., Bobek, L. A., Bruenn, J. A. (1981a). Yeast dsRNA viral transcriptase pulse products: identification of the transcript strand. Nucl. Acids Res. 10:5049–5060.Google Scholar
  22. Brennan, V., Field, L., Cizdziel, P., Bruenn, J. A. (1981b). Sequence of the 3′ ends of yeast dsRNA: proposed transcriptase and replicase initiation sites. Nucl. Acids Res. 9:4007–4021.PubMedGoogle Scholar
  23. Bruenn, J. A. (1980). Virus-like particles of yeast. Ann. Rey. Microbiol. 34:49–68.Google Scholar
  24. Bruenn, J. A., Brennan, V. R. (1980). Yeast viral double-stranded RNAs have heterogeneous 3′ termini. Cell 19:923–933.PubMedGoogle Scholar
  25. Bruenn, J., Kane, W. (1978). Relatedness of the double-stranded RNAs present in yeast virus-like particles. J. Virol. 26:762–772.PubMedGoogle Scholar
  26. Bruenn, J., Keitz, B. (1976). The 5′ ends of yeast killer factor RNAs are pppGP. Nucl. Acids Res. 3:2427–2436.PubMedGoogle Scholar
  27. Bruenn, J. A., Bobek, L., Brennan, K., Held, W. (1980). Yeast viral RNA polymerase is a transcriptase. Nucl. Acids Res. 8(13):2985–2998.PubMedGoogle Scholar
  28. Buck, K. W. (1980). Viruses and killer factors of fungi. In: “The Eukaryotic Microbial Cell,” edited by G. W. Gooday, D. Lloyd, and A. P. J. Trinci, Soc. Gen. Micro. Symp. 30:329–375. Cambridge University Press.Google Scholar
  29. Buck, K. W., Lhoas, P., Street, B. K. (1973). Virus particles in yeast. Biochem. Soc. Trans. 1:1141–1142.Google Scholar
  30. Bussey, H. (1972). Effects of yeast killer factor on sensitive cells. Nature New Biol. 235:73–75.PubMedGoogle Scholar
  31. Bussey, H. (1974). Yeast killer factor-induced turbidity changes in cells and sphaeroplasts of a sensitive strain. J. Gen. Microbiol. 82:171–179.Google Scholar
  32. Bussey, H. (1981). Physiology of killer factor in yeast. Advances in Microbial Physiology, 22, edited by A. H. Rose and G. Morris. New York: Academic Press, pp. 93–122.Google Scholar
  33. Bussey, H., Sherman, D. (1973). Yeast killer factor: ATP leakage and coordinate inhibition of macromolecular synthesis in sensitive cells. Biochem. Biophys. Acta. 298:868–875.PubMedGoogle Scholar
  34. Bussey, H., Skipper, N. (1975). Membrane-mediated killing of Saccharomyces cerevisiae by glycoproteins from Torulopsis glabrata. J. Bacteriol. 124:476–483.PubMedGoogle Scholar
  35. Bussey, H., Sherman, D., Somers, J. M. (1973). Action of yeast killer factor: A resistant mutant with sensitive spheroplasts. J. Bacteriol. 113:1193–1197.PubMedGoogle Scholar
  36. Bussey, H., Saville, D., Hutchins, K., Palfree, R. G. E. (1979). Binding of yeast killer toxin to a cell wall receptor on sensitive Saccharomyces cerevisiae. J. Bacteriol. 140:888–892.PubMedGoogle Scholar
  37. Bussey, H., Sacks, W., Galley, D., Saville, D. (1982). Yeast killer plasmid mutations affecting toxin secretion and activity, and toxin immunity function. Mol. Cel. Biol. 2(4):346–354.Google Scholar
  38. Carignani, G., Lancashire, W. E., Griffiths, D. E. (1977). Extra-chromosomal inheritance of Rhodamine 6G resistance in Saccharomyces cerevisiae. Mol. Gen. Genet. 151:49–56.PubMedGoogle Scholar
  39. Chow, N., Shatkin, A. J. (1975). Blocked and unblocked 5′ termini in reovirus genome RNA. J. Virol. 15:1057–1064.PubMedGoogle Scholar
  40. Clare, J. J., Oliver, S. G. (1979). The regulation of RNA synthesis in yeast IV. Synthesis of double-stranded RNA. Mol. Gen. Genet. 171:161–166.PubMedGoogle Scholar
  41. Clark-Walker, G. D., Azad, A. A. (1980). Hybridizable sequences between cytoplasmic ribosomal RNAs and 3 micron circular DNAs of Saccharomyces cerevisiae and Torulopsis glabrata. Nucl. Acids Res. 8(5):1009–1022.PubMedGoogle Scholar
  42. Cohn, M. S., Tabor, C. W., Tabor, H. (1978a). Isolation and characterisation of Saccharomyces cerevisiae mutants deficient in S-adenosylmethionine decarboxylase spermidine and spermidine. J. Bacteriol. 134:208–213.PubMedGoogle Scholar
  43. Cohn, M. S., Tabor, C. W., Tabor, H., and Wickner, R. B. (1978b). Spermidine or spermine requirement for killer double-stranded RNA plasmid replication in yeast. J. Biol. Chem. 253:5225–5227.PubMedGoogle Scholar
  44. Cox, B. S. (1965). ψ, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 20:505–521.Google Scholar
  45. Culbertson, M. R., Charmos, L., Johnson, M. T., Fink, G. R. (1977). Frameshifts and frameshift suppressors in Saccharomyces cerevisiae. Genetics 86:745–764.PubMedGoogle Scholar
  46. El-Sherbeini, M., Bevan, E. A., Mitchell, D. J. (1983). Current Genet. 7: 63–68.Google Scholar
  47. Fink, G. R., Styles, C. A. (1972). Curing of a killer factor in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 69:2846–2849.PubMedGoogle Scholar
  48. Fried, H. M., Fink, G. R. (1978). Electron microscopic heteroduplex analysis of “killer” double-stranded RNA species from yeast. Proc. Nat. Acad. Sci. USA 75:4224–4228.PubMedGoogle Scholar
  49. Furuichi, Y., Morgan, M., Muthukrishnan, S., Shatkin, A. J. (1975a). Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure, m7G(5′)- ppp(5′)GmpCp-. Proc. Nat. Acad. Sci. USA 72:362–366.PubMedGoogle Scholar
  50. Furuichi, Y., Muthukrishnan, S., Shatkin, A. J. (1975b). 5′-terminal m7G(5′)- ppp(5′)Gmp in vivo: identification in reovirus genome. Proc. Nat. Acad. Sci. USA 72:742–745.PubMedGoogle Scholar
  51. Garvik, B., Haber, J. E. (1978). New cytoplasmic genetic element that controls 20S RNA synthesis during sporulation in yeast. J. Bacteriol. 134:261–269.PubMedGoogle Scholar
  52. Guerineau, M. (1979). Plasmid DNA in yeast. In: Viruses and Plasmids in Fungi. edited by P. A. Lemke. New York: Marceli Dekker, pp. 540–593.Google Scholar
  53. Guerineau, M., Grandchamp, C., Paoletti, C., Slonimski, P. (1971). Characterisation of a new class of circular DNA molecules in yeast. Biochem. Biophys. Res. Commun. 42:550–557.Google Scholar
  54. Guerineau, M., Slonimski, P. P., Avner, P. R. (1974). Yeast episome: Oligomycin resistance associated with a small covalently closed, non-mitochondrial circular DNA. Biochem. Biophys. Res. Commun. 61:462–469.PubMedGoogle Scholar
  55. Guerry-Kopecko, P., Wickner, R. B. (1980). Isolation and characterisation of temperature-sensitive mak mutants of Saccharomyces cerevisiae. J. Bacteriol. 144(3):1113–1118.PubMedGoogle Scholar
  56. Guild, G. M., Stollar, V. (1977). Defective interfering particles of Sendai virus. V. Sequence relationships between SVSTD 42S RNA and intracellular defective Viral RNAs1,2. Virology 77:175–188.PubMedGoogle Scholar
  57. Gunge, N., Tamaru, A., Ozawa, F., Sakaguchi, K. (1981). Isolation and characterisation of linear deoxyribonucleic acid plasmids from Kluyveromyces lactis and the plasmid-associated killer character. J. Bacteriol. 145(l):382–390.PubMedGoogle Scholar
  58. Hastie, N., Brennan, V., Bruenn, J. (1978). No homology between double-stranded RNA and nuclear DNA of yeast. J. Virol. 28:1002–1005.PubMedGoogle Scholar
  59. Haylock, R. W., Bevan, E. A. (1981). Characterisation of the L dsRNA encoded mRNA of yeast. Curr. Genet. 4:181–186.Google Scholar
  60. Herring, A. J., Bevan, E. A. (1974). Virus-like particles associated with double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. J. Gen. Virol. 22:387–394.PubMedGoogle Scholar
  61. Herring, A. J., Bevan, E. A. (1975). Double-stranded RNA containing particles from the yeast Saccharomyces cerevisiae and their relationship to the killer character. In: Molecular Biology of Nucleocytoplasmic Relationships, edited by S. Puiseux-Dao. Amsterdam: Elsevier, pp. 149–154.Google Scholar
  62. Herring, A. J., Bevan, E. A. (1977). Yeast virus-like particles possess a capsid-associated single-stranded RNA polymerase. Nature 268:464–466.PubMedGoogle Scholar
  63. Hill, M., Hillova, J., Dankchev, D., Mariage, R., Goubin, G. (1974). Infectious viral DNA in Raw sarcoma virus-transformed nonproducer and producer animal cells. Cold Spring Harbor Symp. Quant. Biol. 39:1015–1016.Google Scholar
  64. Holm, C. A., Oliver, S. G., Newman, A. M., Holland, L. E., McLaughlin, C. S., Wagner, E. K., Warner, R. C. (1978). The molecular weight of yeast PI double-stranded RNA. J. Biol. Chem. 253:8332–8336.PubMedGoogle Scholar
  65. Hopper, J. E., Bostian, K. A., Rowe, L. B., Tipper, D. J. (1977). Translation of the L-species dsRN A genome of killer-associated virus-like particles of Saccharomyces cerevisiae. J. Biol. Chem. 252:9010–9017.PubMedGoogle Scholar
  66. Huang, A. S., Baltimore, D. (1977). Defective interfering animal viruses. In: Comprehensive Virology, edited by H. Fraenkel-Conrat and R. R. Wagner, Vol. 10. New York: Plenum Press, pp. 73–116.Google Scholar
  67. Hughes, A. R., Wilkie, D. (1972). Genetic analysis of mitochondrial resistance to tetracycline in Saccharomyces cerevisiae. Heredity 28:117–127.PubMedGoogle Scholar
  68. Ishii, K., Hashumoto-Goboh, T., Matsubara, K. (1978). Random replication and random assortment model for plasmid incompatibility in bacteria. Plasmid 1:435–445.PubMedGoogle Scholar
  69. Johnson, L. D., Lazzarini, R. A. (1977). The 5′ terminal nucleotide of RNA from vesicular stomatitis virus defective interfering particles. Virology 77:863–866.PubMedGoogle Scholar
  70. Kadowaki, K., Halvorson, H. O. (1971a). Appearance of a new species of ribonucleic acid during sporulation in Saccharomyces cerevisiae. J. Bacteriol. 105:826–830.PubMedGoogle Scholar
  71. Kadowaki, K., Halvorson, H. O. (1971b). Isolation and properties of a new species of ribonucleic acid synthesised in sporulating cells of Saccharomyces cerevisiae. J. Bacteriol. 105:831–836.PubMedGoogle Scholar
  72. Kandel, J. S., Stern, T. A. (1979). Killer phenomenon in pathogenic yeasts. Antimicrob. Agents Chemother. 15:568–571.Google Scholar
  73. Kane, W., Pietras, D., Bruenn, J. (1979). The evolution of defective-interfering dsRNAs of the yeast killer virus. J. Virol. 32:692–696.PubMedGoogle Scholar
  74. Keene, J. D., Rosenberg, M., Lazzarini, R. A. (1977). Characterisation of the 3′- terminus of RNA isolated from vesicular stomatitis virus and from its defective interfering particles. Proc. Natl. Acad. Sci. USA 74:1353–1357.PubMedGoogle Scholar
  75. Keene, J. D., Schubert, M., Lazzarini, R. A., Rosenberg, M. (1978). Nucleotide sequence homology at the 3′-termini of RNA from vesicular stomatitis virus and its defective interfering particles. Proc. Natl. Acad. Sci. USA 75:3225–3229.PubMedGoogle Scholar
  76. Kennedy, S. I. T. (1976). Sequence and relationships between genome and the intra-cellular RNA species of standard and defective-interfering Semliki forest virus. J. Mol. Biol. 108:491–511.PubMedGoogle Scholar
  77. Koper-Zwarthoff, F. C., Bol, J. F. (1980). Nucleotide sequence of the putative recognition site for coat protein in the RNAs of alfalfa mosaic virus and tobacco streak virus. Nucl. Acids Res. 8:3307–3318.PubMedGoogle Scholar
  78. Kruszewska, A., Szczesniak, B. (1978). Janus green resistance in Saccharomyces cerevisiae: Interaction of nuclear and cytoplasmic factors. Mol. Gen. Genet. 160:171–181.PubMedGoogle Scholar
  79. Kunz, B. A., Ball, A. J. S. (1977). Glucosamine resistance in yeast. II. Cytoplasmic determinants conferring resistance. Mol. Gen. Genet. 153:169–177.PubMedGoogle Scholar
  80. Lacroute, F. (1971). Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 196:519–522.Google Scholar
  81. Lanonov, V. L., Grishin, A. V. (1980). 3 micron DNA: A new class of extrachromosomal DNA of the yeast. Dokl. Acad. Nauk. USSR Ser. Biokhim. 250(l–6):78–81.Google Scholar
  82. Leibowitz, M. J., Wickner, R. B. (1978). pet. 18: a chromosomal gene required for cell growth and maintenance of mitochondrial DNA and the killer plasmid of yeast. Mol. Gen. Genet. 165:115–121.PubMedGoogle Scholar
  83. Leppert, M., Kort, L., Kolakofsky, D. (1977). Further characterisation of Sendai virus D1-RNAs: A model for their generation. Cell 12:539–552.PubMedGoogle Scholar
  84. Lhoas, P. (1972). Electron micrographs of cells of Saccharomyces cerevisiae infected with double-stranded RNA virus from Aspergillus niger and Penicillium stoloniferum. Nature: New Biol. 236:86–87.Google Scholar
  85. Livingstone, D. M. (1977). Inheritance of the 2 um DNA plasmid from Saccharomyces. Genetics, 86:73–84.Google Scholar
  86. Lund, P. M. (1982). Studies on killer and {psi} phenomena in Saccharomyces cerevisiae. D. Phil. Thesis, Oxford University.Google Scholar
  87. Makower, M. (1964). Inheritance of a killer reaction in yeast. D. Phil. Thesis, Oxford University.Google Scholar
  88. Maule, A. P., Thomas, P. D. (1973). Strains of yeast lethal to brewery yeasts. J. Inst. Brew. (London) 79:137–141.Google Scholar
  89. McFadden, J. J. P. (1982). Detection and characterisation of viruses in conidial and ascospore isolates of Graeumannomyces graminis var. tritici. Ph.D. Thesis, University of London.Google Scholar
  90. Mitchell, D. J. (1974). The correlation between nucleic acid differences and the killer phenotypes in yeast. Ph.D. Thesis, University of London.Google Scholar
  91. Mitchell, D. J., Herring, A. J., Bevan, E. A. (1976a). The genetic control of dsRNA virus-like particles associated with Saccharomyces cerevisiae killer yeast. Heredity 37:129–134.PubMedGoogle Scholar
  92. Mitchell, D. J., Herring, A. J., Bevan, E. A. (1976b). Virus uptake in Yeasts. In: Microbial and Plant Protoplasts, edited by J. F. Peberdy, A. H. Rose, H. J. Rogers, and E. C. Cocking. London: Academic Press, pp. 91–105.Google Scholar
  93. Miura, K. I., Watanake, K., Sugura, M. (1974). 5′-terminal nucleotide sequences of the double-stranded RNA of silkworm cytoplasmic polyhedrosis virus. J. Mol. Biol. 86:31–48.PubMedGoogle Scholar
  94. Mossop, D. W., Franki, R. I. B. (1978). Survival of a satellite RNA in vivo and its dependence on cucumber mosaic virus for its replication. Virology 86:562–566.PubMedGoogle Scholar
  95. Naumov, G. I., Naumova, T. I. (1973). Comparative genetics of yeast. XIII. Comparative study of killer strains of Saccharomyces from different collections. Genetika 9:140–145.Google Scholar
  96. Naumov, G. I., Tyurina, L. V., Bur’Yan, N. I., Naumova, T. I. (1973). Wine-making, an ecological niche of type K2 killer Saccharomyces. Biol. Nauki 16:103–107.Google Scholar
  97. Naumova, T. I., Naumov, G. I. (1973). Comparative genetics of yeast. XII. Study of antagonistic interrelations in Saccharomyces yeast. Genetika 9:85–90.Google Scholar
  98. Nesterova, G. F. (1974). Infection of germinating spores of Saccharomyces cerevisiae by cytoplasmic factor K. Genetika 10:78.Google Scholar
  99. Newman, A. M., Elliot, S. G., McLaughlin, C. S., Sutherland, P. A., Warner, R. C. (1981). Replication of double-stranded RNA of the virus-like particles in Saccharomyces cerevisiae. J. Virol. 38:263–271.PubMedGoogle Scholar
  100. Novick, R. P., Hoppensteadt, F. C. (1978). On plasmid incompatibility. Plasmid 1:421–434.PubMedGoogle Scholar
  101. Novick, P., Field, C., Schekman, R. (1980). Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205,215.PubMedGoogle Scholar
  102. Oliver, S. G., McCready, S. J., Holm, C., Sutherland, P. A., McLaughlin, C. S., Cox, B. S. (1977). Biochemical and physiological studies of the yeast virus-like particle. J. Bacteriol. 130:1303–1309.PubMedGoogle Scholar
  103. Ouchi, K., Akiyama, H. (1976). Breeding of useful killer Sake yeasts by repeated back-crossing. J. Ferment. Technol. 54:615–623.Google Scholar
  104. Palfree, R., Bussey, H. (1979). Yeast killer toxin: Purification and characterisation of the protein toxin from Saccharomyces cerevisiae. Eur. J. Biochem. 93:487–493.PubMedGoogle Scholar
  105. Philliskirk, G., Young, T. W. (1975). The occurrence of killer character in yeasts of various genera. Antonie van Leeuwenhoek 41:147–151.PubMedGoogle Scholar
  106. Pietras, D. F., Bruenn, J. A. (1976). The molecular biology of the yeast killer factor. Int. J. Biochem. 7:173–179.Google Scholar
  107. Puhalla, J. E. (1968). Compatibility reactions on solid medium and interstrain inhibition in Ustilago maydis. Genetics 60:461–474.PubMedGoogle Scholar
  108. Rogers, D. T. (1976). The genetic and phenotypic characterisation of killer strains of yeast isolated from different sources. Ph.D. Thesis, University of London.Google Scholar
  109. Rogers, D., Bevan, E. A. (1978). Group classification of killer yeasts based on cross-reactions between strains of different species and origin. J. Gen. Microbiol. 105:199–202.Google Scholar
  110. Rogers, D. T., Saville, D., Bussey, H. (1979). Saccharomyces cerevisiae killer expression mutant kex 2 has altered secretory proteins and glycoproteins. Biochem. Biophys. Res. Commun. 90:187–193.PubMedGoogle Scholar
  111. Rothstein, R. J., Sherman, F. (1980). Dependence on mating type for the overproduction of iso-2-cytochrome c in the yeast mutant CYC7-H2. Genetics 94:891–898.PubMedGoogle Scholar
  112. Rotman, A. (1975). Genetics of a primaquin-resistant yeast. J. Gen. Microbiol. 89:1–10.PubMedGoogle Scholar
  113. Saksena, K. N., Lemke, P. A. (1978). Viruses in Fungi. In: Comprehensive Virology, edited by H. Fraenkel-Conrat and R. R. Wagner, Vol. 12. New York: Plenum Publishing, pp. 102–143.Google Scholar
  114. Schamhart, D. H. J., Ten Berge, A. M. A., Van de Poll, K. W. (1975). Isolation of a catabolite repression mutant of yeast as a revertant of a strain that is maltose negative in the respiratory deficient state. J. Bacteriol. 121:747–752.PubMedGoogle Scholar
  115. Shalitin, C., Fischer, I. (1975). Abundant species of poly(A)-containing RNA from Saccharomyces cerevisiae. Biochim. Biophys. Acta. 414:263–272.PubMedGoogle Scholar
  116. Skipper, N., Bussey, H. (1977). Mode of action of yeast toxins: Energy requirement for Saccharomyces cerevisiae killer toxin. J. Bacteriol. 129:668–677.PubMedGoogle Scholar
  117. Sogin, S. J., Haber, J. E., Halvorson, H. O., (1972). Relationships between sporulation-specific 20S ribonucleic acid and ribosomal ribonucleic acid processing in Saccharomyces cerevisiae. J. Bacteriol. 112:806–814.PubMedGoogle Scholar
  118. Somers, J. M. (1973). Isolation of suppressive mutants from killer and neutral strains of Saccharomyces cerevisiae. Genetics 74:571–579.PubMedGoogle Scholar
  119. Somers, J. M., Bevan, E. A. (1969). The inheritance of the killer character in yeast. Genet. Res. 13:71–83.PubMedGoogle Scholar
  120. Sommer, S. S., Wickner, R. B. (1982). Co-curing of plasmids affecting killer double-stranded RNAs of Saccharomyces cerevisiae: {HOK}, {NEX}, and the abundance of L are related and further evidence that M1 requires L. J. Bacteriol. 150(2):545–551.PubMedGoogle Scholar
  121. Southern, E. M. (1975). Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.PubMedGoogle Scholar
  122. Sweeney, T. K., Tate, A., Fink, G. R. (1976). A study of the transmission and structure of double-stranded RNAs associated with the killer phenomenon in Saccharomyces cerevisiae. Genetics 84:27–42.PubMedGoogle Scholar
  123. Theivendirarajah, K. (1969). The genetic linkage relationships of genes concerned in the determination of the killer character in yeast. Ph.D. Thesis, University of London.Google Scholar
  124. Tohe, A., Wickner, R. B. (1979). A mutant killer plasmid whose replication depends on a chromosomal “superkiller” mutation. Genetics 91:673–682.Google Scholar
  125. Tohe, A., Wickner, R. B. (1980). “Superkiller” mutations suppress chromosomal mutations affecting double-stranded RNA killer plasmid replication in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77(l):527–530.Google Scholar
  126. Toh-e, A., Guerry, P., Wickner, R. B. (1978). Chromosomal superkiller mutants of Saccharomyces cerevisiae. J. Bacteriol. 136:1002–1007.Google Scholar
  127. Tzen, J. C., Somers, J. M., Mitchell, D. J. (1974). A dsRNA analysis of suppressive sensitive mutants of “killer” Saccharomyces cerevisiae. Heredity 33:132.Google Scholar
  128. Vodkin, M. (1977). Homology between double-stranded RNA and nuclear DNA of yeast. J. Virol. 21:516–521.PubMedGoogle Scholar
  129. Vodkin, M., Fink, G. R. (1973). A nucleic acid associated with a killer strain of yeast. Proc. Natl. Acad. Sci. USA 70:1069–1072.PubMedGoogle Scholar
  130. Vodkin, M., Katterman, F., Fink, G. R. (1974). Yeast killer mutants with altered double-stranded ribonucleic acid. J. Bacteriol. 117:681–686.PubMedGoogle Scholar
  131. Weber, H., Linder, R. (1975). Virusartige partikeln in hef esprots plasten I: Elektrin-mikroshopischer nachweis. Z. Allg. Mikrobiol. 15:631–638.PubMedGoogle Scholar
  132. Wejksnora, P. J., Haber, J. E. (1978). Ribonucleoprotein particle appearing during sporulation in yeast. J. Bacteriol. 134:246–260.PubMedGoogle Scholar
  133. Welsh, J. D., Leibowitz, M. J. (1980). Transcription of killer virion dsRNA in vitro. Nucl. Acids Res. 8:2365–2375.PubMedGoogle Scholar
  134. Welsh, J. D., Leibowitz, M. J. (1982). Localisation of genes for the double-stranded RNA killer virus of yeast. Proc. Natl. Acad. Sci. USA 79:786–789.PubMedGoogle Scholar
  135. Welsh, J. D., Leibowitz, M. J., Wickner, R. B. (1980). Virion DNA-dependent RNA polymerase from Saccharomyces cerevisiae. Nucl. Acid Res. 8:2349–2363.Google Scholar
  136. Wickner, R. B. (1974a). Killer character of Saccharomyces cerevisiae: Curing by growth at elevated temperatures. J. Bacteriol. 117(3):1356–1357.PubMedGoogle Scholar
  137. Wickner, R. B. (1974b). Chromosomal and non-chromosomal mutations affecting the “killer character” of Saccharomyces cerevisiae. Genetics 76:423–432.PubMedGoogle Scholar
  138. Wickner, R. B. (1976b). Mutants of the killer plasmid of Saccharomyces cerevisiae dependent on chromosomal diploidy for expression and maintenance. Genetics 82:273–285.PubMedGoogle Scholar
  139. Wickner, R. B. (1977). Deletion of mitochondrial DNA bypassing a chromosomal gene needed for maintenance on the killer plasmid of yeast. Genetics 87:441–452.PubMedGoogle Scholar
  140. Wickner, R. B. (1978). Twenty-six chromosomal genes needed to maintain the killer double-stranded RNA plasmid of Saccharomyces cerevisiae. Genetics 88:419–425.PubMedGoogle Scholar
  141. Wickner, R. B. (1979a). The killer double-stranded RNA plasmids of yeast. Plasmid 2:303–322.PubMedGoogle Scholar
  142. Wickner, R. B. (1979b). Mapping chromosomal genes of Saccharomyces cerevisiae using an improved genetic mapping method. Genetics 92:803–821.PubMedGoogle Scholar
  143. Wickner, R. B. (1980). Plasmids controlling exclusion of the K2 killer double-stranded RNA plasmid of yeast. Cell 21:217–226.PubMedGoogle Scholar
  144. Wickner, R. B. (1981). Killer systems in Saccharomyces cerevisiae. In: The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance edited by J. N. Strathern, E. W. Jones, J. R. Broach, Cold Spring Harbor Laboratory, pp. 415–444.Google Scholar
  145. Wickner, R. B., Leibowitz, M. J. (1976a). Two chromosomal genes required for killing expression in killer strains of Saccharomyces cerevisiae. Genetics 82:429–442.PubMedGoogle Scholar
  146. Wickner, R. B., Leibowitz, M. J. (1976b). Chromosomal genes essential for replication of a double-stranded RNA plasmid of Saccharomyces cerevisiae: The killer character of yeast. J. Mol. Biol. 105:427–443.PubMedGoogle Scholar
  147. Wickner, R. B., Leibowitz, M. J. (1977). Dominant chromosomal mutation bypassing chromosomal genes needed for killer RNA plasmid replication in yeast. Genetics 87:453–469.PubMedGoogle Scholar
  148. Wickner, R. B., Leibowitz, M. J. (1979). Mak mutants of yeast: Mapping and characterisation. J. Bacteriol. 140:154–160.PubMedGoogle Scholar
  149. Wickner, R. B., Toh-e, A. (1982). {HOK}, a new yeast non-Mendelian trait, enables a replication-defective killer plasmid to be maintained. Genetics, in press.Google Scholar
  150. Woods, D. R. (1966). Studies of the nature of the “killer” factor in yeast. D. Phil. Thesis, Oxford University.Google Scholar
  151. Young, T. W., Yagiu, M. (1978). A comparison of the killer character in different yeasts and its classification. Antonie van Leeuwenhoek J. Microbiol. Ser. 44:59–77.Google Scholar
  152. Zakian, V. A., Wagner, D. W., Fangman, W. L. (1981). Yeast L-dsRNA is synthesised during the Gl phase but not the S phase of the cell cycle. Mol. Cel. Biol. 1:673–679.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Diane J. Mitchell
    • 1
  • E. Alan Bevan
    • 1
  1. 1.School of Biological Sciences, Queen Mary CollegeUniversity of LondonLondonEngland

Personalised recommendations