Skip to main content

Role of the Monkey Superior Colliculus in the Spatial Localization of Saccade Targets

  • Chapter

Abstract

It has long been recognized that information about the position of the eyes in the orbit plays an important role in the perception of visual direction. With the eyes, head, and body stationary, there is a one-to-one correspondence between the direction of a visual stimulus and the location of its image on the retina. However, since the eyes do not remain stationary, the perception of visual direction must be based upon a combination of information about the location of the retinal image and the position of the eyes in the orbit (Helmholtz, 1866; Hoist & Mittelstaedt, 1950; Matin, 1972; Shebilske, 1977; Skavenski, 1976).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albano, J. E., & Wurtz, R. H. Modification of the pattern of saccadic eye movements following ablation of monkey superior colliculus. Neuroscience Abstracts, 1978, 8, 161.

    Google Scholar 

  • Anderson, R. A., & Mountcastle, V. B. The direction of gaze influences the response of many light sensitive neurons of the inferior parietal lobule (area 7) in waking monkeys. Neuroscience Abstracts, 1980, 6, 673.

    Google Scholar 

  • Barnes, W. T., Magoun, H. W., & Ranson, S. W. The ascending auditory pathway in the brainstem of the monkey. Journal of Comparative Neurology, 1943, 79, 129–152.

    Article  Google Scholar 

  • Buttner, U., Buttner-Ennever, J. A., Henn, V. Vertical eye movement related unit activity in the rostral mesencephalic reticular formation of the alert monkey. Brain Research, 1977,130, 234–252.

    Article  Google Scholar 

  • Cynader, M., & Berman, N. Receptive field organization of monkey superior colliculus. Journal of Neurophysiology, 1972,41, 1394–1417.

    Google Scholar 

  • Drager, U. C., & Hubel, D. H. Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. Journal of Neurophysiology, 1975, 38, 690–713.

    PubMed  CAS  Google Scholar 

  • Drager, U. C., & Hubel, D. H. Topography of visual and somatosensory projections to mouse superior colliculus.Journal of Neurophysiology, 1976, 39, 91–101.

    PubMed  CAS  Google Scholar 

  • Edwards, S. B., & Henkel, C. K. Superior colliculus connections with the extraocular motor nuclei in the cat. Journal of Comparative Neurology, 1978,179, 451–468.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, S. B., Ginsburgh, C. L., Henkel, C. K., & Stein, B. E. Sources of subcortical projections to the superior colliculus in the cat. Journal of Comparative Neurology, 1979,184, 309–330.

    Article  PubMed  CAS  Google Scholar 

  • Frankfurter, A., Weber, J. T., & Harting, J. K. Brain stem projections to lobule VII of the posterior vermis in the squirrel monkey: As demonstrated by the retrograde axonal transport of tritiated horseradish peroxidase. Brain Research, 1977, 124, 135–139.

    Article  PubMed  CAS  Google Scholar 

  • Frankfurter, A., Weber, J. T., Royce, G. J., Strominger, N. L., & Harting, J. K. An autoradiographic analysis of the tecto-olivary projection in primates.Brain Research, 1976,118, 245–257.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, A. F., & Robinson, D. A. A method for measuring horizontal and vertical eye movement chronically in the monkey. Journal of Applied Physiology, 1966, 21, 1068–1070.

    PubMed  CAS  Google Scholar 

  • Goldberg, M. E., & Robinson, D. L. Visual system. Superior colliculus. In R. Masterton (Ed.), Handbook of behavioral neurobiology (Vol. 1). New York: Plenum Press, 1978, pp. 119–164.

    Google Scholar 

  • Goldman, P. S., & Nauta, W. J. H. Autoradiographic demonstration of a projection from prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Research, 1976,116, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, B. Receptive fields in deep layers of cat superior colliculus. Journal of Neurophysiology, 1973, 38, 157–178.

    Google Scholar 

  • Graham, J. An autoradiographic study of the efferent connections of the superior colliculus in the cat. Journal of Comparative Neurology, 1977, 173, 629–654.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M. Evidence for banding of the cat’s ipsilateral retinotectal connection. Brain Research, 1976,114, 318–327.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A. M. Organization of oculomotor pathways in the cat and rhesus monkey. In R. Baker & A. Berthoz (Eds.), Control of gaze by brain stem neurons. Amsterdam: Elsevier/North-Holland, 1977.

    Google Scholar 

  • Hallet, P. E., & Lightstone, A. D. Saccadic eye movement towards stimuli triggered by prior saccades. Vision Research, 1976,16, 99–106.

    Article  Google Scholar 

  • Harting, J. K. Descending pathways from the superior colliculus: An autoradiographic analysis in the rhesus monkey (Macaca mulatta). Journal of Comparative Neurology, 1977,173, 583–612.

    Article  PubMed  CAS  Google Scholar 

  • Harting, J. K., Huerta, M. F., Frankfurter, A. J., Strominger, N. L., & Royce, G. J. Ascending pathways from the monkey superior colliculus: An autoradiographic analysis. Journal of Comparative Neurology, 1980,192, 853–882.

    Article  PubMed  CAS  Google Scholar 

  • Helmholtz, H. von [A treatise on physiological optics (Vol. 3)] (J. P. C. Southall, Ed. and Trans.). New York: Dover, 1962. (Originally published, 1866.)

    Google Scholar 

  • Hendrickson, A., Wilson, M. E., & Toyne, M. J. The distribution of optic nerve fibers in Macaca mulatta. Brain Research, 1970, 23, 425–427.

    CAS  Google Scholar 

  • Henn, V., & Cohen, B. Coding of information about rapid eye movements in the pontine reticular formation of alert monkeys. Brain Research, 1976, 108, 307–325.

    Article  PubMed  CAS  Google Scholar 

  • Holst, E. von, & Mittelstaedt, H. Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften, 1950, 37, 464–476. (Reprinted and translated in P. C. Dodwell (Ed.), Perceptual processing: Stimulus equivalence and pattern recognition. New York: Appleton, 1971.)

    Article  Google Scholar 

  • Hubel, D. H., Lay, S., Wiesel, T. N. Mode of termination of retinotectal fibers in Macaque monkey: An autoradiographic study. Brain Research, 1975, 96, 25–40.

    Article  PubMed  CAS  Google Scholar 

  • Hyvarinen, J., & Poranen, A. Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain, 1974, 97, 673–692.

    Article  PubMed  CAS  Google Scholar 

  • Kase, M., Miller, D. C., & Nöda, H. Discharges of Purkinje cells and mossy fibers in the cerebellar vermis of the monkey during saccadic eye movements and fixation. Journal of Physiology (London), 1980, 300, 539–555.

    CAS  Google Scholar 

  • Kase, M., Nöda, H., Suzuki, D. A., & Miller, D. C. Target velocity signals of visual tracking in vermal Purkinje cells of the monkey. Science, 1979, 205, 717–720.

    Article  PubMed  CAS  Google Scholar 

  • Keller, E. L. Participation of medial pontine reticular formation in eye movement generation in monkey. Journal of Neurophysiology, 1974, 37, 316–320.

    PubMed  CAS  Google Scholar 

  • King, W. M., & Fuchs, A. F. Neuronal activity in the mesencephalon related to vertical eye movements. In R. Baker & A. Berthoz (Eds.), Control of gaze by brain stem neurons. Amsterdam: Elsevier/North-Holland, 1977.

    Google Scholar 

  • Kunzle, H., & Akert, K. Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. Journal of Comparative Neurology, 1974,173, 147–164.

    Article  Google Scholar 

  • Kunzle, H., Akert, K., Wurtz, R. H. Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study. Brain Research, 1976, 117, 487–492.

    Article  PubMed  CAS  Google Scholar 

  • Kuypers, H. G. J. M., & Lawrence, D. G. Cortical projections to the red nucleus and the brain stem in the rhesus monkey.Brain Research, 1967, 4, 151–188.

    Article  PubMed  CAS  Google Scholar 

  • Lund, R. D. Anatomic studies on the superior colliculus. Investigative Ophthalmology, 1972, 11, 434–444. (a)

    PubMed  CAS  Google Scholar 

  • Lund, R. D. Synaptic patterns in the superficial layers of the superior colliculus of the monkey, Macaca mulatta. Experimental Brain Research, 1972, 4, 151–188. (b)

    Google Scholar 

  • Lynch, J. C., Mountcastle, V. B., Talbot, W. H., & Yin, T. C. T. Parietal lobe mechanisms for directed visual attention. Journal of Neurophysiology, 1977, 40, 362–389.

    PubMed  CAS  Google Scholar 

  • Matin, L. Eye movements and perceived visual direction. In D. Jameson & L. Hurvich (Eds.), Handbook of sensory physiology (Vol. 7). Berlin: Springer, 1972.

    Google Scholar 

  • Mays, L. E., & Sparks, D. L. Dissociation of visual and saccade-related responses in superior colliculus neurons. Journal of Neurophysiology, 1980, 43, 207–232. (a)

    PubMed  CAS  Google Scholar 

  • Mays, L. E., & Sparks, D. L. Saccades are spatially, not retinocentrically, coded. Science, 1980,208, 1163–1165. (b)

    Article  PubMed  CAS  Google Scholar 

  • Mays, L. E., & Sparks, D. L. The localization of saccade targets using a combination of retinal and eye position information. In A. Fuchs & W. Becker (Eds.), Progress in oculomotor research. New York: Elsevier, 1981, pp. 39–47.

    Google Scholar 

  • Mcllwain, J. T. Topographic organization and convergence in corticotectal projections from areas 17, 18, and 19 in the cat. Journal of Neurophysiology, 1977, 40, 189–198.

    Google Scholar 

  • Mohler, C. W., & Wurtz, R. H. Role of striate cortex and superior colliculus in visual guidance of saccadic eye movements in monkeys.Journal of Neurophysiology, 1977, 40, 74–94.

    PubMed  CAS  Google Scholar 

  • Optican, L. M., & Robinson, D. A. Cerebellar-dependent adaptive control of primate saccadic system. Journal of Neurophysiology, 1980, 44, 1058–1076.

    PubMed  CAS  Google Scholar 

  • Pasik, T., Pasik, P., & Bender, M. B. The superior colliculi and eye movements. Archives of Neurology, 1966,15, 420–436.

    PubMed  CAS  Google Scholar 

  • Petras, J. M. Connections of the parietal lobe. Journal of Psychiatric Research, 1971, 8, 189–201.

    Article  PubMed  CAS  Google Scholar 

  • Poirier, L. J., & Bertrand, C. Experimental and anatomical investigation of the lateral spino-thalamic and spinotectal tracts. Journal of Comparative Neurology, 1955,102, 745–758.

    Article  PubMed  CAS  Google Scholar 

  • Pollack, J. G. & Hickey, T. L. The distribution of retino-collicular axon terminals in rhesus monkey. Journal of Comparative Neurology, 1979,185, 587–602.

    Article  PubMed  CAS  Google Scholar 

  • Ritchie, L. Effects of cerebellar lesions on saccadic eye movements. Journal of Neurophysiology, 1976, 39, 1246–1256.

    PubMed  CAS  Google Scholar 

  • Robinson, D. A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Research, 1972,12, 1795–1808.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. A. Models of the saccadic eye movement control system. Kybernetik, 1973,14, 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. A. Oculomotor control signals. In G. Lennerstrand, & P. Bach-y-Rita, (Eds.), Basic mechanisms of ocular motility and their clinical implications. Oxford: Pergamon Press, 1975, pp. 337–374.

    Google Scholar 

  • Ron, S., & Robinson, D. A. Eye movements evoked by cerebellar stimulation in the alert monkey. Journal of Neurophysiology, 1973, 36, 1004–1022.

    PubMed  CAS  Google Scholar 

  • Sakata, H., Shibutani, H., & Kawano, K. Spatial properties of visual fixation neurons in posterior parietal association cortex of the monkey. Journal of Neurophysiology, 1980, 43, 1654–1672.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., & Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. Journal of Neurophysiology, 1971, 34, 920–936.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., & Stryker, M. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. Journal of Neurophysiology, 1972, 35, 915–924.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., Stryker, M., Cynader, M., & Berman, N. Response characteristics of single cells in the monkey colliculus following ablation or cooling of visual cortex.Journal of Neurophysiology, 1974,37, 181–194.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H., True, S. D., & Conway, J. L. Effects of frontal eye field and superior colliculus ablations on eye movements.Science, 1979,206, 590–592. (a)

    Article  PubMed  CAS  Google Scholar 

  • Schiller, P. H., True, S. D., & Conway, J. L. Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey. Brain Research, 1979, 179, 162–164. (b)

    Article  PubMed  CAS  Google Scholar 

  • Schiller, P. H., True, S. D., & Conway, J. L. Deficits in eye movements following frontal eye-field and superior colliculus ablations. Journal of Neurophysiology, 1980, 44, 1175–1189.

    PubMed  CAS  Google Scholar 

  • Schlag, J., Schlag-Rey, M., Peck, C. K., & Joseph, J. -P. Visual responses of thalamic neurons depending on the direction of gaze and the position of targets in space. Experimental Brain Research, 1980, 40, 170–184.

    Article  Google Scholar 

  • Shebilske, W. L. Visuomotor coordination in visual direction and position constancies. In W. Epsten (Ed.), Stability and constancy in visual perception: Mechanisms and processes. New York: Wiley, 1977, pp. 23–63.

    Google Scholar 

  • Skavenski, A. A. The nature and role of extraretinal eye-position information in visual localization. In R. A. Monty, & J. W. Senders (Eds.), Eye movements and psychological processes. New York: Wiley, 1976, pp. 277–287.

    Google Scholar 

  • Sparks, D. L. Functional properties of neurons in the monkey superior colliculus: Coupling of neuronal activity and saccade onset. Brain Research, 1978, 156, 1–16.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, D. L., Holland, R., & Guthrie, B. L. Size and distribution of movement fields in the monkey superior colliculus.Brain Research, 1976,113, 21–34.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, D. L., & Mays, L. E. Movement fields of saccade-related burst neurons in the monkey superior colliculus. Brain Research, 1980,190, 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Sparks, D. L., & Mays, L. E. The role of the monkey superior colliculus in the control of saccadic eye movements: A current perspective. In A. Fuchs & W. Becker (Eds.), Progress in oculomotor research. New York: Elsevier, 1981, pp. 137–144.

    Google Scholar 

  • Sparks, D. L., Mays, L. E., & Pollack, J. G. Saccade-related unit activity in the monkey superior colliculus. In R. Baker & A. Berthoz (Eds.), Control of gaze by brainstem neurons. Amsterdam: Elsevier/North-Holland, 1977, pp. 437–444.

    Google Scholar 

  • Sparks, D. L., & Pollack, J. G. The neural control of eye movements: The role of the superior colliculus. In B. A. Brooks & F. J. Bajandas (Eds.), Eye movements. New York: Plenum Press, 1977.

    Google Scholar 

  • Sprague, J. M. Mammalian tectum: Instrinsic organization, afferent inputs, and integrative mechanisms. Anatomical substrate. Neurosciences Research Program Bulletin, 1975,13, 204–213.

    PubMed  CAS  Google Scholar 

  • Stein, B. E., Magalhaes-Castro, B., & Kruger, L. Relationship between visual and tactile representations in cat superior colliculus. Journal of Neurophysiology, 1976, 39, 401–419.

    PubMed  CAS  Google Scholar 

  • Weber, J. T., & Harting, J. K. Parallel pathways connecting the primate superior colliculus with the posterior vermis. An experimental study using autoradiographic and horseradish peroxidase tracing methods. In C. Roback (Ed.), Sensory systems of primates. New York: Plenum Press, 1978, pp. 135–149.

    Google Scholar 

  • Weber, J. T., Partlow, G. D., & Harting, J. K. The projection of the superior colliculus upon the inferior olivary complex of the cat: An autoradiographic and horseradish peroxidase study. Brain Research, 1978,144, 369–377.

    Article  PubMed  CAS  Google Scholar 

  • Whitlock, D. G., & Nauta, W. J. H. Subcortical projections from the temporal neocortex of Macaca mulatta. Journal of Comparative Neurology, 1956,106, 183–212.

    Google Scholar 

  • Wurtz, R. H., & Albano, J. E. Visual-motor function of the primate superior colliculus. Annual Review of Neuroscience, 1980, 3, 180–226.

    Article  Google Scholar 

  • Wurtz, R. H., & Goldberg, M. E. Activity of the superior colliculus in behaving monkey. III. Cells discharging before eye movements. Journal of Neurophysiology, 1972, 35, 575–586. (a)

    PubMed  CAS  Google Scholar 

  • Wurtz, R. H., & Goldberg, M. E. Activity of the superior colliculus in behaving monkey. IV. Effects of lesions on eye movement. Journal of Neurophysiology, 1972, 35, 587–596. (b)

    PubMed  CAS  Google Scholar 

  • Young, L. R., & Stark, L. Variable feedback experiments testing a sampled data model for eye tracking movements. IEEE Transactions on Human Factors in Electronics, 1963, HFE-4, 28–51.

    Article  Google Scholar 

  • Zahn, J. R., Abel, L. A., & Dell’Osso, L. F. Audio-ocular response characteristics. Sensory Processes, 1978, 2, 32–37.

    PubMed  CAS  Google Scholar 

  • Zee, D. S., Optican L. M., Cook, J. D., Robinson, D. A., & Engel, W. K. Slow sac-cades in spinocerebellar degeneration. Archives of Neurology, 1976, 33, 243–251.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sparks, D.L., Mays, L.E. (1983). Role of the Monkey Superior Colliculus in the Spatial Localization of Saccade Targets. In: Hein, A., Jeannerod, M. (eds) Spatially Oriented Behavior. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5488-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5488-1_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5490-4

  • Online ISBN: 978-1-4612-5488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics