Skip to main content

Neural Mechanisms of Visual Orientation in Rodents: Targets Versus Places

  • Chapter
Spatially Oriented Behavior

Abstract

In many vertebrates, including mammals, the primary sensory system for the organization of behavior in space is vision. For example, the complex and exquisite movements that are made by predators as they pursue their prey are in many cases clearly under visual control, as are the equally impressive maneuvers made by the prey as they attempt to elude their would-be captors. But both predator and prey are not simply changing their direction and rate of locomotion in response to the movements of one another; they are also avoiding obstacles and negotiating barriers in the terrain through which they are moving. Moreover, the prey may be locomoting toward a particular and visible target such as a tree into which the predator cannot follow, or toward a particular but invisible place such as a burrow in which it can take refuge. Finally, during the performance of these patterns of behavior, the information arriving through the eyes is constantly being integrated with information provided by the other receptor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apter, J. T. Eye movements following strychninization of the superior colliculus in cats. Journal of Neurophysiology, 1946, 9, 43–88.

    Google Scholar 

  • Bauer, J. H., & Cooper, R. M. Effect of posterior cortical lesions on performance of a brightness discrimination task. Journal of Comparative and Physiological Psychology, 1964,58, 84–92.

    Article  PubMed  CAS  Google Scholar 

  • Berman, N., & Cynader, M. Receptive fields in cat superior colliculus after visual cortex lesions. Journal of Physiology, 1975, 245, 261–270.

    PubMed  CAS  Google Scholar 

  • Berman, N., & Payne, B. R. Cross corticofugal projections in the cat. Society for Neuroscience Abstracts, 1980, 6, 482.

    Google Scholar 

  • Berson, D. M., & Graybiel, A. M. Thalamocortical projections and histochemical identification of subdivision of the LP-pulvinar complex in the cat.Society for Neuroscience Abstracts, 1978, 4, 620.

    Google Scholar 

  • Caviness, V. S., Jr., & Sherman, H. B. Retinal and neocortical afferents to the superior colliculus of the gerbil. Paper presented at Satellite Symposium on Comparative Aspects of Vision in Rodents at the 9th annual meeting of the Society for Neuroscience, Atlanta, November 1979.

    Google Scholar 

  • Chalupa, L. M., & Rhoades, R. W. Responses of visual, somatosensory and auditory neurons in the golden hamster’s superior colliculus. Journal of Physiology, 1977, 270, 595–626.

    PubMed  CAS  Google Scholar 

  • Dale, R. H. I. The role of vision in the rat’s radial maze performance (Doctoral dissertation, University of Western Ontario, 1979). Dissertation Abstracts International, 1980,40, 5047B.

    Google Scholar 

  • Dale, R. H. I., & Innis, N. Spatial memory without vision: Radial maze performance of blind rats.University of Western Ontario Research Bulletin, No. 523, 1980.

    Google Scholar 

  • Dean, P. Visual acuity in hooded rats: Effects of superior collicular and posterior neocortical lesions. Brain Research, 1978,156, 17–31.

    Article  PubMed  CAS  Google Scholar 

  • Dean, P. Visual pathways and acuity in hooded rats. Behavioral Brain Research, 1981, 3, 239–272.

    Article  CAS  Google Scholar 

  • Ebbesson, S. On the organization of central visual pathways in vertebrates. Brain, Behavior and Evolution, 1970, 3, 178–194.

    Article  PubMed  CAS  Google Scholar 

  • Emerson, V. F. Grating acuity of the golden hamster: The effects of stimulus orientation and luminance. Experimental Brain Research, 1980, 38, 43–52.

    Article  CAS  Google Scholar 

  • Foreman, N. P., & Stevens, R. G. Visual lesions and radial arm maze performance in rats. Paper presented at the annual meeting of the British Psychological Society, Nottingham, April 1979.

    Google Scholar 

  • Giolli, R. A., & Guthrie, M. D. Organization of projections of visual areas I and II upon the superior colliculus and pretectal nuclei in the rabbit. Brain Research, 1967, 6, 388–390.

    Article  PubMed  CAS  Google Scholar 

  • Goodale, M. A., & Cooper, R. M. Cues utilized by normal and posterior-neodecorti-cate rats in the Yerkes brightness discrimination task.Psychonomic Science, 1965, 3, 513–514.

    Google Scholar 

  • Goodale, M. A., & Dale, R. H. I. Radial-maze performance in the rat following lesions of posterior neocortex. Behavioral Brain Research, 1981, 3, 273–288.

    Article  CAS  Google Scholar 

  • Goodale, M. A., Foreman, N. P., & Milner, A. D. Visual orientation in the rat: A dissociation of deficits following cortical and collicular lesions. Experimental Brain Research, 1978, 31, 445–457.

    Article  CAS  Google Scholar 

  • Goodale, M. A., & Milner, A. D. Fractionating orientation behavior in the rodent. In D. Ingle, M. Goodale, & R. Mansfield (Eds.), Analysis of visual behavior. Cambridge, Mass. M.I.T. Press, 1982, pp. 267–299.

    Google Scholar 

  • Goodale, M. A., Milner, A. D., & Rose, J. Susceptibility to startle during ongoing behavior following collicular lesions in the rat. Neuroscience Letters, 1975, 1, 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Goodale, M. A., & Murison, R. C. C. The effects of lesions of the superior colliculus on locomotor orientation and the orienting reflex in the rat. Brain Research, 1975, 88, 243–255.

    Article  PubMed  CAS  Google Scholar 

  • Harting, J. K., & Noback, C. R. Subcortical projections from the visual cortex in the tree shrew. Brain Research, 1971, 25, 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Hess, S., Biirgi, S., & Bucher, V. Motor function of tectal and tegmental area. Monatschrift fur Psychiatrie und Neurologie, 1946,112, 1–52.

    Article  CAS  Google Scholar 

  • Horel, J. A. Effects of subcortical lesions on brightness discrimination acquired by rats without visual cortex. Journal of Comparative and Physiological Psychology, 1968, 65, 103–109.

    Article  PubMed  CAS  Google Scholar 

  • Hyde, J. E., & Eason, R. G. Characteristics of ocular movements evoked by stimulation of brainstem in cats. Journal of Neurophysiology, 1959,22, 666–678.

    PubMed  CAS  Google Scholar 

  • Hyde, J. E., & Eliasson, S. G. Brainstem induced eye movements in cats. Journal of Comparative Neurology, 1957,108,139–172.

    Article  PubMed  CAS  Google Scholar 

  • Ingle, D. Two visual systems in the frog. Science, 1973,181, 1053–1055.

    Article  PubMed  CAS  Google Scholar 

  • Ingle, D. Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. Journal of Comparative and Physiological Psychology, 1977, 91, 1359–1364. (a)

    Article  PubMed  CAS  Google Scholar 

  • Ingle, D. Role of visual cortex in anticipatory orientation toward moving targets by the gerbil. Society for Neuroscience Abstracts, 1977, 3, 68. (b)

    Google Scholar 

  • Ingle, D. Organization of visuomotor behaviors in vertebrates. In D. Ingle, M. Goodale, & R. Mansfield (Eds.), Analysis of visual behavior. Cambridge, Mass. M.I.T. Press, 1982, pp. 67–109.

    Google Scholar 

  • Ingle, D. J., Cheal, M., & Dizio, P. Cine analysis of visual orientation and pursuit by the Mongolian gerbil. Journal of Comparative and Physiological Psychology, 1979, 93, 919–928.

    Article  Google Scholar 

  • Lashley, K. S. Brain mechanisms and intelligence: A quantitative study of injuries to the brain. New York: Dover, 1963. (Originally published, 1929).

    Google Scholar 

  • Lashley, K. S. The mechanism of vision. VII. The projection of the retina upon the primary optic centers of the rat. Journal of Comparative Neurology, 1934, 59, 341–373.

    Article  Google Scholar 

  • Lashley, K. S. Studies of cerebral function in learning. XII. Loss of the maze habit after occipital lesions in blind rats. Journal of Comparative Neurology, 1943, 79, 431–462.

    Article  Google Scholar 

  • Lund, R. D. Terminal distribution in the superior colliculus of fibers originating in the visual cortex. Nature, 1964, 264, 1283–1285.

    Article  Google Scholar 

  • Lund, R. D. The occipitotectal pathway of the rat. Journal of Anatomy, 1966,100, 51–62.

    PubMed  CAS  Google Scholar 

  • Lund, R. D. Anatomic studies on the superior colliculus. Investigative Ophthalmology 1972,21, 434–441.

    Google Scholar 

  • Mlinar, E., & Goodale, M. A. Visual search in Mongolian gerbils with lesions of the superior colliculus. Paper presented at the annual meeting of the Canadian Psychological Association, Calgary, June 1980.

    Google Scholar 

  • Mort, E., Finlay, B. L., & Cairns, S. J. The role of the superior colliculus in visually-guided locomotion and visual orienting in the hamster. Physiological Psychology, 1980, 8, 20–28.

    Google Scholar 

  • Nauta, W. J. H., & Straaten, J. J. van. The primary optic centers of the rat: An experimental study by the “bouton” method. Journal of Anatomy, 1947, 81, 127–134.

    Google Scholar 

  • O’Keefe, J., & Nadel, L. The hippocampus as a cognitive map. Oxford, England: Oxford University Press, 1978.

    Google Scholar 

  • Olton, D. S. Spatial memory. Scientific American, 1977, 236, 82–98.

    Article  PubMed  CAS  Google Scholar 

  • Olton, D. S. Characteristics of spatial memory. In S. H. Hulse, H. Fowler, & W. K. Honig (Eds.), Cognitive processes in animal behavior. Hillsdale, N.J.: Erlbaum, 1978.

    Google Scholar 

  • Olton, D. S., & Collison, C. Intramaze cues and “odor trails” fail to direct choice behavior on an elevated maze. Animal Learning and Behavior, 1979, 7, 221–223.

    Article  Google Scholar 

  • Olton, D. S., Collison, C., & Werz, M. A. Spatial memory and radial arm maze performance in rats.Learning and Motivation, 1977, 8, 289–314.

    Article  Google Scholar 

  • Olton, D. S., & Samuelson, R. J. Remembrance of places passed: Spatial memory in rats. Journal of Experimental Psychology: Animal Behavior Processes, 1976, 2, 97–116.

    Article  Google Scholar 

  • Olton, D. S., Walker, J. A., & Gage, F. H. Hippocampal connections and spatial discrimination. Brain Research, 1918,139, 295–308.

    Article  Google Scholar 

  • Orban, G. A., Kennedy, H., & Maes, H. Comparison of neuronal properties in areas 17 and 18 of the cat. Society for Neuroscience Abstracts, 1979, 5, 801.

    Google Scholar 

  • Rhoades, R. W., & Chalupa, L. M. Functional and anatomical consequences of neonatal visual cortical damage in the superior colliculus of the golden hamster. Journal of Neurophysiology, 1978, 41, 1466–1494. (a)

    PubMed  CAS  Google Scholar 

  • Rhoades, R. W., & Chalupa, L. M. Functional properties of the corticotectal projection in the golden hamster. Journal of Comparative Neurology, 1978,180, 617–634. (b)

    Article  PubMed  CAS  Google Scholar 

  • Riss, W., & Jakway, J. S. A perspective on the fundamental retinal projections of vertebrates. Brain, Behavior, and Evolution, 1970, 3, 30–35.

    Article  CAS  Google Scholar 

  • Rosenquist, A. C., & Palmer, L. A. Visual receptive-field properties of cells in the superior colliculus after cortical lesions in the cat.Experimental Neurology, 1971, 33, 629–652.

    Article  PubMed  CAS  Google Scholar 

  • Scalia, F., & Arango, V. Topographic organization of the projections of the retina to the pretectal region in the rat. Journal of Comparative Neurology, 1979,186, 271–292.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G. E. Contrasting visuomotor functions of tectum and cortex in the golden hamster.Psychologische Forschung, 1967, 31, 52–62.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, G. E. Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science, 1969, 163, 895–902.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, S., Augerinos, G., & Black, A. H. Stimulus control of spatial behavior on the eight-arm maze in rats. Learning and Motivation, 1980,11, 1–18.

    Article  Google Scholar 

  • Thomas, R. K. Mass function and equipotentiality: A reanalysis of Lashley’s retention data. Psychological Reports, 1970,27, 899–902.

    Article  PubMed  Google Scholar 

  • Thomas, R. K., & Weir, V. K. The effects of lesions in the frontal or posterior association cortex of rats on maze III. Physiological Psychology, 1975, 3, 210–214.

    Google Scholar 

  • Thompson, R. Localization of the “maze memory system” in the white rat. Physiological Psychology, 1974,2, 1–17.

    Google Scholar 

  • Thompson, R., & Rich, I. Differential effects of posterior thalamic lesions on retention of various visual habits. Journal of Comparative and Physiological Psychology, 1963,56, 60–65.

    Article  Google Scholar 

  • Tsang, Y. -C. The functions of the visual areas of the cerebral cortex of the rat in the learning and retention of the maze. I. Comparative Psychology Monographs, 1934,10 (4, Serial No. 50).

    Google Scholar 

  • Tsang, Y. -C. The functions of the visual areas of the cerebral cortex of the rat in the learning and retention of the maze, II. Comparative Psychology Monographs, 1936,12, (2, Serial No. 57).

    Google Scholar 

  • Wickelgren, B., & Sterling, P. Influence of visual cortex on receptive-fields in the superior colliculus of the cat. Journal of Neurophysiology, 1969, 32, 16–23.

    PubMed  CAS  Google Scholar 

  • Zoladek, L., & Roberts, W. A. The sensory basis of spatial memory in the rat. Animal Learning and Behavior, 1978, 6, 77–81.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Goodale, M.A. (1983). Neural Mechanisms of Visual Orientation in Rodents: Targets Versus Places. In: Hein, A., Jeannerod, M. (eds) Spatially Oriented Behavior. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5488-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5488-1_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5490-4

  • Online ISBN: 978-1-4612-5488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics