Skip to main content

Visual Information Processing for Saccadic Eye Movements

  • Chapter
Spatially Oriented Behavior

Abstract

The appearance of a target in the human peripheral visual field frequently leads to the response of a saccadic eye movement to that target. In many cases this appears to have a reflex nature, whereas in others the movement may best be described as voluntary target following. It is suggested later that a dichotomous classification into reflex and voluntary responses is oversimplified, but for the most part the analysis in this chapter ignores this question and concentrates on the details of the process whereby the visual information about the target position leads to an accurate saccade at a particular time. Although this analysis makes use almost entirely of behavioral observations on human subjects, the explanatory concepts used are, in many cases, derived from neurophysiological knowledge of the visual and oculomotor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bahill, A. T., Adler, D., & Stark, L. Most naturally occurring human saccades have magnitudes of 15 degrees or less.Investigative Ophthalmology, 1975, 14, 468–469.

    PubMed  CAS  Google Scholar 

  • Bartz, A. E. Eye movement latency, duration and response time as a function of angular displacement. Journal of Experimental Psychology, 1962, 64, 318–324.

    Article  PubMed  CAS  Google Scholar 

  • Bartz, A. E. Fixation errors in eye movements to peripheral stimuli. Journal of Experimental Psychology, 1967, 75, 444–446.

    Article  Google Scholar 

  • Becker, W. Do correction saccades depend exclusively on retinal feedback? A note on the possible role of non-retinal feedback. Vision Research, 1976, 16, 425–427.

    Article  PubMed  CAS  Google Scholar 

  • Becker, W., & Jiirgens, R. An analysis of the saccadic system by means of double step stimuli. Vision Research, 1979,19, 967–983.

    Article  PubMed  CAS  Google Scholar 

  • Breitmeyer, B. G. Simple reaction time as a measure of the temporal response properties of sustained and transient channels. Vision Research, 1975, 15, 1411–1412.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, M. E., & Ross, L. E. Saccade latency in children and adults: Effects of warning interval and target eccentricity. Journal of Experimental Child Psychology, 1977, 23, 539–549.

    Article  PubMed  CAS  Google Scholar 

  • Coren, S., & Hoenig, P. Effect of non target stimuli upon length of voluntary saccades. Perceptual Mo tor Skills, 1972, 34, 499–508.

    Article  CAS  Google Scholar 

  • Cowey, A., & Rolls, E. T. Human cortical magnification factor and its relationship to visual acuity. Experimental Brain Research, 1974, 21, 447–454.

    Article  CAS  Google Scholar 

  • Erickson, R. P. Stimulus coding in topographic and non-topographic afferent modalities; On the significance of the activity of individual sensory neurons. Psychological Review, 1968, 75, 447–465.

    Article  PubMed  CAS  Google Scholar 

  • Feldon, S., Feldon, P., & Kruger, L. Topography of the retinal projection on the superior colliculus of the cat.Vision Research, 1970,10, 135–143.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, J. M. A simple apparatus for recording microsaccades during visual fixation. Quarterly Journal of Experimental Psychology, 1974,26, 167–170.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, J. M. Local and global influences on saccadic eye movements. In D. F. Fisher, R. A. Monty & J. W. Senders (Eds.), Eye Movements, Cognition and Visual Perception. Hillsdale, N.J.: Erlbaum, 1981. (b)

    Google Scholar 

  • Findlay, J. M. The visual stimulus for saccadic eye movements in human observers. Perception, 1980, 9, 7–21.

    Article  PubMed  CAS  Google Scholar 

  • Findlay, J. M. Spatial and temporal factors in the anticipatory generation of saccadic eye movements. Vision Research, 1981,21, 347–354. (a)

    Article  PubMed  CAS  Google Scholar 

  • Frost, D., & Pöppel, E. Different programming modes of human saccadic eye movements as a function of stimulus eccentricity; Indications of a functional subdivision of the visual field.Biological Cybernetics, 1976, 23, 39–48.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M. E., & Wurtz, R. H. Activity of superior colliculus in behaving monkey. I. Visual receptive fields of single neurons. Journal of Neurophysiology, 1972, 35, 542–559.

    PubMed  CAS  Google Scholar 

  • Gould, J. D. Eye movements during visual search and memory search. Journal of Experimental Psychology, 1973, 98, 184–195.

    Article  PubMed  CAS  Google Scholar 

  • Heywood, S., & Churcher, J. Structure of the visual array and saccade latency; Implications for oculomotor control.Quarterly Journal of Experimental Psychology, 1980, 32, 335–341.

    Article  PubMed  CAS  Google Scholar 

  • Hou, R. L., & Fender, D. H. Processing of direction and magnitude by the saccadic eye movement system.Vision Research, 1979,19, 1421–1426.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, A. The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In F. Crescitelli (Ed.), Handbook of sensory physiology (Vol. 7–5): The Visual System in Vertebrates. Berlin: Springer, 1978.

    Google Scholar 

  • Keller, E. L. Control of saccadic eye movements by midline brainstem neurons. In R. Baker & A. Berthoz (Eds.), Control of gaze by brain stem neurons. Amsterdam: Elsevier/North-Holland, 1977.

    Google Scholar 

  • Koenderink, J. J., Bouman, M. A., Bueno de Mesquita, A. E., Sleppendel, S. Perimetry of contrast detection thresholds of moving spatial sine wave patterns. III. The target extent as a controlling parameter. Journal of the Optical Society of America, 1978, 68, 854–860.

    Article  PubMed  CAS  Google Scholar 

  • Lane, R. H., Allman, J. M., Kaas, J. H., & Miezin, F. M. The visuotopic organization of the superior colliculus of the owl monkey. Brain Research, 1973, 60, 335–349.

    Article  PubMed  CAS  Google Scholar 

  • Leushina, L. I. On the estimation of position of photostimulus and eye movements. Biofizika, 1965,10, 130–136.

    PubMed  CAS  Google Scholar 

  • Lévy-Schoen, A. Determination et latence de la réponse oculomotrice a deux stimulus. L Année Psychologique, 1969, 69, 373–392.

    Article  Google Scholar 

  • Lévy-Schoen, A. Le champ d’activité du regard: Données expérimentales. L Année Psychologique, 1974, 74, 43–66.

    Article  PubMed  Google Scholar 

  • Lévy-Schoen, A. Flexible and/or rigid control of oculumotor scanning behaviour. In D. F. Fisher, R. A. Monty, & J. W. Senders (Eds.), Eye Movement, Cognition and Visual Perception, Hillsdale, N.J.: Erlbaum, 1981.

    Google Scholar 

  • Lévy-Schoen, A., & Blanc-Garin, J. On oculomotor programming and perception. Brain Research, 1974, 71, 443–450.

    Article  PubMed  Google Scholar 

  • McIlwain, J. T. Visual receptive fields and their images in the superior colliculus of the cat.Journal of Neurophysiology, 1975, 38, 219–230.

    PubMed  CAS  Google Scholar 

  • Megaw, E. D. Factors underlying distributions of eye fixation times. In A. Lavilla, C. Teiger, & A. Wisner (Eds.), Age et constraintes de travail. Jouy-en-Josas, France: NEB Editions Scientifiques, 1975.

    Google Scholar 

  • Michard, A., Têtard, C., & Lévy-Schoen, A. Attente du signal et temps de reaction oculomoteur.L Année Psychologique, 1974, 74, 387–402.

    Google Scholar 

  • Miller, L. K. Eye movement latency as a function of age, stimulus uncertainty and position in the visual field. Perceptual Motor Skills, 1969, 28, 631–636.

    Article  CAS  Google Scholar 

  • Mohler, C. W., & Wurtz, R. H. Organization of monkey superior colliculus: Intermediate layer cells discharging before eye movements. Journal of Neurophysiology, 1976, 39, 722–744.

    PubMed  CAS  Google Scholar 

  • Parker, D. M., & Salzen, E. A. Latency changes in the human visual evoked response to sinusoidal gratings.Vision Research, 1977,17, 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  • Posner, M. I., Nissen, M. J., & Ogden, W. C. Attended and unattended processing modes. In H. L. Pick & I. J. Saltzman (Eds.), Modes of perceiving and processing information. Hillsdale, N.J.: Erlbaum, 1978.

    Google Scholar 

  • Prablanc, C., & Jeannerod, M. Latence et precision des saccades en fonction de l’intensité, de la durée et de la position retinienne d’un stimulus. Revue d’Electro-encephalographie et de Neurophysiologie Clinique, 1974, 4, 484–488.

    Article  CAS  Google Scholar 

  • Prablanc, C., & Jeannerod, M. Corrective saccades: Dependence on retinal afferent signals. Vision Research, 1975,15, 465–470.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, D. A. Models of the saccadic eye movement control system. Kybernetik, 1973,14, 71–83.

    Article  PubMed  CAS  Google Scholar 

  • Saslow, M. G. Effects of components of displacement step stimuli on latency for saccadic eye movement. Journal of the Optical Society of America, 1967, 57, 1024–1029.

    Article  PubMed  CAS  Google Scholar 

  • Sharpe, J. A., Lo, A. W., & Rabinovitch, H. E. Control of the saccadic and smooth pursuit systems after cerebral hemidecortication. Brain, 1979, 102, 387–403.

    Article  PubMed  CAS  Google Scholar 

  • Sternberg, S. The discovery of processing stages: Extensions of Donders’ method. In W. G. Koster (Ed.), Attention and performance II. Acta Psychologica, 1969, 30, 276–315.

    Google Scholar 

  • Timberlake, G. T., Wyman, D., Skavenski, A. A., & Steinman, R. M. The oculomotor error signal in the fovea. Vision Research, 1972,12, 1059–1064.

    Article  PubMed  CAS  Google Scholar 

  • Todd, J. T., & van Gelder, P. Implications of a transient-sustained dichotomy for the measurement of human performance. Journal of Experimental Psychology, Human Perception and Performance, 1980, 5, 625–638.

    Article  Google Scholar 

  • van Gisbergen, J. A. M., & Robinson, D. A. Generation of micro-and macrosaccades by burst neurons in the monkey. In R. Baker & A, Berthoz (Eds.), Control of gaze by brain stem neurons. Amsterdam: Elsevier/North-Holland, 1977.

    Google Scholar 

  • Virsu, V.,& Rovamo, J. Visual resolution, contrast sensitivity, and the cortical magnification factor. Experimental Brain Research, 1979, 37, 1–16.

    Article  Google Scholar 

  • Wheeless, L. L., Cohen, G. H., & Boynton, R. M. Luminance as a parameter of the eye-movement control system. Journal of the Optical Society of America, 1967, 57, 394–400.

    Article  Google Scholar 

  • White, C. T., Eason, R. G., & Bartlett, N. R. Latency and duration of eye movements in the horizontal plane. Journal of the Optical Society of America, 1962, 52, 210–213.

    Article  PubMed  CAS  Google Scholar 

  • Wyman, D., & Steinman, R. M. Latency characteristics of small saccades. Vision Research, 1973,13, 2173–2176.

    Article  PubMed  CAS  Google Scholar 

  • Young, L. R. Pursuit eye tracking movements. In P. Bach-y-Rita, C. C. Collins, & J. E. Hyde (Eds.), The control of eye movements. New York: Academic Press, 1971.

    Google Scholar 

  • Young, L. R., & Stark, L. Variable feedback experiments using a sampled data model for tracking eye movements. IEEE Transactions in Human Factor in Electronics1963FE-4, 38–51.

    Google Scholar 

  • Zihl, J. “Blindsight”: Improvement of visually guided eye movements by systematic practice in patients with cerebral blindness. Neuropsychologia, 1980,18, 71–77.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Findlay, J.M. (1983). Visual Information Processing for Saccadic Eye Movements. In: Hein, A., Jeannerod, M. (eds) Spatially Oriented Behavior. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5488-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5488-1_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5490-4

  • Online ISBN: 978-1-4612-5488-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics