Arbitrary Conjugations of CM Types

Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 255)


This chapter is based on an unpublished article of Tate [Ta], who formulated a conjecture extending the fundamental theorem of complex multiplication to the case when the automorphism σ does not leave the reflex field fixed. Tate obtains a commutative diagram just as before, up to an idele of square 1, thus leaving the conjecture that this idele can in fact be taken to be 1. This conjecture is equivalent to an important special case of a conjecture of Langlands concerning the conjugation of Shimura varieties [Lglds]. Tate reformulates the conjecture in terms of a “type transfer”. The first two sections of the chapter give the general algebraic number theory setting for this type transfer, and the final sections give the application to the abelian varieties with complex multiplication.


Galois Group Abelian Variety Double Coset Finite Extension Coset Representative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  1. 1.Department of MathematicsYale UniversityNew HavenUSA

Personalised recommendations