Skip to main content

Measurement of pesticide vapor pressures

  • Conference paper
Book cover Residue Reviews

Part of the book series: Residue Reviews ((RECT,volume 85))

Abstract

Volatilization and vapor phase transport are important in the dissipation and movement of most pesticides from soil, plant, and water systems. Vapor pressure is the key parameter controlling pesticide vapor behavior and its use, along with other basic physical properties of water solubility, adsorption, and persistence can be used to estimate relative vaporization rates of pesticides under environmental conditions (Spencer et al. 1973). The vapor pressures of many pesticides increase three- to four-fold for each 10°C increase in temperature. Consequently, reliable values for vapor pressure at various temperatures are necessary to estimate vapor losses of chemicals from surface deposits and to calculate their partitioning between soil, water, and air for predicting volatility from water or from wet soils and to calculate atmospheric residence times of chemicals in droplets and aerosols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atkins, D. H. F., and A. E. J. Eggleton: Studies of atmospheric wash-out and deposition of γ-BHC, dieldrin, and p, p’-DDT using radio-labelled pesticides. In: Proc. Symp. on Nucl. Tech. Environ. Pollut., pp. 521–533. Vienna: Internat. Atomic Energy Agency (1971).

    Google Scholar 

  • Balson, E. W.: Studies in vapour pressure measurement, Part III. An effusion manometer sensitive to 5 × 10−6 millimeters of mercury: vapour pressure of DDT and other slightly volatile substances. Trans. Faraday Soc. 43, 54 (1947).

    Article  CAS  Google Scholar 

  • Bidleman, T. F.: Personal communication (1981).

    Google Scholar 

  • Chickos, J. S.: A simple equilibrium method for determining heats of sublimation. J. Chem. Educ. 52, 134 (1975).

    Article  CAS  Google Scholar 

  • Dobbs, A. J., and C. Grant: Pesticide volatilization rates: A new measurement of the vapor pressure of pentachlorophenol at room temperature. Pest. Sci. 11, 29 (1980).

    Article  CAS  Google Scholar 

  • Ehlers, W., J. Letey, W. F. Spencer, and W. J. Farmer: Lindane diffusion in soils: I. Theoretical considerations and mechanism of movement. Sou Sci. Soc. Amer. Proc. 33, 501 (1969).

    Article  CAS  Google Scholar 

  • Farmer, W. J., M. S. Yang, J. Letey, and W. F. Spencer: Hexachlorobenzene: Its vapor pressure and vapor phase diffusion in soil. Soil Sci. Soc. Amer. J. 44, 676 (1980).

    Article  CAS  Google Scholar 

  • Grover, R., W. F. Spencer, W. J. Farmer, and T. D. Shoup: Triallate vapor pressure and volatilization from glass surfaces. Weed Sci. 26, 505 (1978).

    CAS  Google Scholar 

  • Guckel, W., G. Synnatschke, and R. Rittig: A method for determining the volatility of active ingredients used in plant protection. Pest. Sci. 4, 137 (1973).

    Article  Google Scholar 

  • Hamaker, J. W., and H. O. Kerlinger. Vapor pressure of pesticides. Adv. Chem. Series 86, 39 (1969).

    Google Scholar 

  • Hamilton, D. J.: Gas Chromatographic measurement of volatility of herbicide esters. J. Chromatogr. 195, 75 (1980).

    Article  PubMed  CAS  Google Scholar 

  • Harris, C. R., and J. H. Mazurek: Comparison of the toxicity to insects of certain insecticides applied by contact and in soil. J. Econ. Entomol. 57, 698 (1964).

    CAS  Google Scholar 

  • Martin, H. (ed.): Pesticide manual: Basic information on the chemicals used as active components of pesticides. Oxford, England: British Crop Protection Council (1971).

    Google Scholar 

  • May, W. E., M. M. Miller, W. J. Sonnefeld, and S. P. Wasik: High performance liquid Chromatographie methods for determining aqueous solubilities, octanol/water partition coefficients and ambient temperature vapor pressures of hydrophobic compounds. Abstract, 182nd Amer. Chem. Soc. Meeting, New York (1981).

    Google Scholar 

  • Mayer, R., W. J. Farmer, and J. Letey: Models for predicting pesticide volatilization of soil-applied pesticides. Soil Sci. Soc. Amer. Proc. 38, 563 (1974).

    Article  Google Scholar 

  • Parochetti, J. V., and E. R. Hein: Volatility and photodecomposition of trifluralin, benefin, and nitralin. Weed Sci. 21, 469 (1973).

    CAS  Google Scholar 

  • Porter, P. E.: Dieldrin. In G. Zweig (ed.): Analytical methods for pesticides, plant growth regulators, and food additives. Vol. II, pp. 143–163. NewYork: Academic Press (1964).

    Google Scholar 

  • Rothman, A. M.: Low vapor pressure determination by the radiotracer transpiration method. J. Agr. Food Chem. 28, 1225 (1980).

    Article  CAS  Google Scholar 

  • Seiber, J. N., J. E. Woodrow, and P. F. Sanders: Estimation of ambient vapor pressures of pesticides from gas Chromatographic retention data. Abstract, 182nd Amer. Chem. Soc. Meeting, New York (1981).

    Google Scholar 

  • Shearer, R. C., J. Letey, W. J. Farmer, and A. Klute: Lindane diffusion in soil. Soil Sci. Soc. Amer. Proc. 37, 189 (1973).

    Article  Google Scholar 

  • Spencer, W. F.: Vapor Pressure and vapor loss. In: A literature survey of benchmark pesticides, pp. 72–165. Washington, D. C: Washington Univ. Med.Center (1976).

    Google Scholar 

  • Spencer W. F. and M. M. Cliath Vapor density of dieldrin. Environ. Sci. Techl. 3 6701969.

    Google Scholar 

  • Spencer, W. F., and M. M. Cliath: Vapor density and apparent vapor pressure of lindane. J. Agr. Food Chem. 18, 529 (1970 a).

    Article  CAS  Google Scholar 

  • Spencer, W. F., and M. M. Cliath: Desorption of lindane from soil as related to vapor density. Soil Sci. Soc. Amer. Proc. 34, 574 (1970 b).

    Article  CAS  Google Scholar 

  • Spencer, W. F., and M. M. Cliath: Volatility of DDT and related compounds. J. Agr. Food Chem. 20, 645 (1972).

    Article  CAS  Google Scholar 

  • Spencer, W. F., and M. M. Cliath: Pesticide volatilization as related to water loss from soil. J. Environ. Qual. 2, 284 (1973).

    Article  CAS  Google Scholar 

  • Spencer, W. F., and M. M. Cliath: Factors affecting vapor loss of trifluralin from soil. J. Agr. Food Chem. 22, 987 (1974).

    Article  CAS  Google Scholar 

  • Spencer, W. F., and M. M. Cliath: Evaluating volatility of toxicants in soil and water. In: Test protocols for environmental fate and movement of toxicants, pp. 110–121. Arlington, VA: Assoc. Official Anal. Chemists (1981).

    Google Scholar 

  • Spencer, W. F., and M. M. Cliath, and W. J. Farmer: Vapor density of soil-applied dieldrin as related to soil-water content and dieldrin concentration. Soil Sci. Soc. Amer. Proc. 33, 509 (1969).

    Article  CAS  Google Scholar 

  • Spencer, W. F., W. J. Farmer, and M. M. Cliath: Pesticide volatilization. Residue Reviews 49, 1 (1973).

    CAS  Google Scholar 

  • Spencer, W. F., T. D. Shoup, M. M. Cliath, W. J. Farmer, and R. Haque: Vapor pressures and relative volatility of ethyl and methyl parathion. J. Agr. Food Chem. 27, 273 (1979).

    Article  CAS  Google Scholar 

  • Thomas, T. C., and J. N. Seiber: Chromosorb 102, an efficient medium for trapping pesticides from air. Bull. Environ. Contam. Toxicol. 12, 17 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Thomson, G. W.: Determination of vapor pressure. In: Physical methods of organic chemistry, 3rd ed., Part I, Vol. I, p. 401. New York: Interscience (1959).

    Google Scholar 

  • Turner, B. C., and D. E. Glotfelty: Field air sampling of pesticide vapors with Polyurethane foam. Anal. Chem. 49, 7 (1977).

    Article  PubMed  CAS  Google Scholar 

  • U.S. Environmental Protection Agency: Proposed environmental standards; and proposed good laboratory practice standards for physical, chemical, persistence, and ecological effects testing. Fed. Register 45(227), 77345 (1980).

    Google Scholar 

  • Westcott, I. W., and T. F. Bidleman: Determination of polychlorinated biphenyl vapor pressures by capillary gas chromatography. J. Chromatog. 210, 331 (1981).

    Article  CAS  Google Scholar 

  • Westcott, J. W., C. G. Simon, and T. F. Bidleman: Determination of polychlorinated biphenyl vapor pressures by a semimicro gas saturation method. Environ. Sci. Technol. 15, 1375 (1981).

    Article  CAS  Google Scholar 

  • Zimmerli, B., and B. Marek: Modellversuche zür Kontamination von Lebensmitteln mit Pestiziden via Gasphase. Mitt. Gebiete Lebensm. Hyg. 65, 55 (1974).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this paper

Cite this paper

Spencer, W.F., Cliath, M.M. (1983). Measurement of pesticide vapor pressures. In: Gunther, F.A., Gunther, J.D. (eds) Residue Reviews. Residue Reviews, vol 85. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5462-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5462-1_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5464-5

  • Online ISBN: 978-1-4612-5462-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics