Recovery Rates and Rehabilitation of Powerline Corridors

  • Gilbert D. Brum
  • Robert S. Boyd
  • Susan M. Carter
Part of the Springer Series on Environmental Management book series (SSEM)


Off-road vehicles (ORVs) and power transmission line construction and maintenance can result in similar environmental disturbances. Both activities directly damage vegetation, disrupt animal life, and considerably alter soil characteristics. These disturbances are usually more obvious and persistent in arid areas, where recovery is very slow (Vasek et al., 1975). Together, power transmission lines and ORVs can lead to greater environmental damage than either one can alone. For example, power transmission line rights-of-way can provide ORV access to previously inaccessible areas and ORV use of transmission line rights-of-way will disrupt or prevent vegetation recovery.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alt, F. (Ed.). 1963. Proceedings of the First National Biomedical Sciences Instrumentation Symposium. Vol. I. Plenum Press, New York, 475 pp.Google Scholar
  2. Anderson, S. S., K. Mann, and H. H. Shugart, Jr. 1977. The effect of transmission line corridors on bird populations. Am. Midi. Naturalist 97:216–221.CrossRefGoogle Scholar
  3. Anthrop, D. F. 1970. Environmental side effects of energy production. Bull. Atomic Sci. 26:39–41.Google Scholar
  4. Bankoske, J. W., D. F. Poznaniak, and H. G. Mathews. 1976. Simulation of transmission line ground-level gradient for biological studies on small plants and animals. Westinghouse Electric Corporation, East Pittsburgh, Pennsylvania, pp. 2–8.Google Scholar
  5. Barbour, M. G. 1968. Germination requirements of a desert shrub, Larrea divaricata. Ecology 49:915–923.CrossRefGoogle Scholar
  6. Barnothy, M. F. 1964. Biological Effects of Magnetic Fields. Plenum Press, New York, 324 pp.Google Scholar
  7. Barthold, L. O. 1971. Electrostatic effects of overhead transmission lines: Hazards and effects. In: International Symposium on High Power Testing, pp. 422–426.Google Scholar
  8. Blackman, V. H., and I. Jorgensen. 1917. The overhead electric discharge and crop production. J. Board of Agric. 24:45–59.Google Scholar
  9. Boe, A. A., and D. K. Salunkhe. 1963. Effects of magnetic fields on tomato ripening. Nature (London) 199:91–92.CrossRefGoogle Scholar
  10. Bonneville Power Administration. 1975. Electrical Effects of Transmission Lines. Bonneville Power Administration, U.S. Dept. Interior, Portland, Oregon, 22 pp.Google Scholar
  11. Brown, F. A., and C. S. Chow. 1973. Interorganistic and environmental influences through extremely weak electro-magnetic fields. Biol. Bull. 144:437–461.CrossRefGoogle Scholar
  12. Brum, G. D. 1980. Coolwater-Kramer 220 kV Transmission Line Revegetation Study. Final Report. Southern California Edison Company, Rosemead, California, 124 pp.Google Scholar
  13. Federal Power Commission. 1971. The 1970 National Power Survey: Guidelines for Growth of the Electric Power Industry. U.S. Government Printing Office, Washington, D.C., 951 pp.Google Scholar
  14. Frenkel, R. E. 1970. Ruderal Vegetation Along Some California Roadsides. University of California Publications in Geography, Vol. 20, VII, 163 pp.Google Scholar
  15. Goodman, E. M., B. Greenebaum, and M. T. Marron. 1976. Effects of extremely low frequency electromagnetic fields on Physarum polycephalum. Radiat. Res. 66:531–540.PubMedCrossRefGoogle Scholar
  16. Graves, W. L. 1976. Revegetation of disturbed sites with native shrub species in the Western Mojave Desert. In: B. L. Kay (Ed.), Tests of Seeds of Mojave Desert Shrubs. Progress Report, Contract Number 53500 CT 4–2(N), U.S. Bureau of Land Management, Davis, California, pp. 11–31.Google Scholar
  17. Graves, W. L., B. L. Kay, and W. A. Williams. 1975. Seed treatment of desert shrubs. Agron. J. 67:773–777.CrossRefGoogle Scholar
  18. Hartline, B. K. 1979. Powerline radiation in the magnetosphere. Science 205: 1365 pp.Google Scholar
  19. Homan, C. 1937. Effects of ionized air and ozone on plants. J. Plant Physiol. 12:957–978.CrossRefGoogle Scholar
  20. Johnson, H. B., F. Vasek, and T. Yonkers. 1974. Some effects of roads on Mojave Desert vegetation: In: Biological Impact Evaluation for the Southern California Edison Company, University of California, Riverside, California, Chapter 9, pp. 9–1 to 9–25.Google Scholar
  21. Johnson, W. C., R. K. Schreiber, and R. L. Burgess. 1979. Diversity of small mammals in a powerline right-of-way and adjacent forest in East Tennessee. Am. Midi. Naturalist 101:231–235.CrossRefGoogle Scholar
  22. Kay, B. L. 1975. Test of Seeds of Mojave Desert Shrubs. Progress Report, Contract 53500-CT4-2(N), U.S. Bureau of Land Management, Davis, California, 24 pp.Google Scholar
  23. King, R. W. 1955. Transmission Line Theory. McGraw-Hill Book Co., Inc., New York, 509 pp.Google Scholar
  24. Korobkova, V. P., Y. A. Morozov, M. D. Stolyarov, and Y. A. Yakub. 1972. Influence of the Electric Field in 500 and 750 KV Switch Yards on Maintenance Staff and Means for Its Protection. International Conference on Large High Tension Electric Systems, Paper 23–06, 23 pp.Google Scholar
  25. Krueger, A. P., S. Kotaka, and P. C. Andriese. 1962. Studies on the effects of gaseous ions on plant growth: I. The influence of positive and negative air ions on the growth of Avena sativa. J. Gen. Physiol. 45:897–904.PubMedCrossRefGoogle Scholar
  26. Krueger, A. P., S. Kotaka, and P. C. Andriese. 1963. A study of the mechanism of air-ion-induced growth stimulation in Hordeum vulgaris. Intl. J. Biometeorol. 7:17–25.CrossRefGoogle Scholar
  27. Krueger, A. P., S. Kotaka, and P. C. Andriese. 1964. The effect of air containing O2−, O2+, CO2−, and CO2+ on the growth of seedlings of Hordeum vulgaris. Intl. J. Biometeorol. 8:17–25.CrossRefGoogle Scholar
  28. Libber, L. M. 1970. Extremely low frequency electromagnetic radiation biological research. Biol. Sci. 20:1169–1170.Google Scholar
  29. McKell, C. M. 1978. Establishment of native plants for the rehabilitation of Paraho processed oil shale in an arid environment. In: R. A. Wright (Ed.), The Reclamation of Disturbed Arid Lands. University of New Mexico Press, Albuquerque, New Mexico, pp. 13–32.Google Scholar
  30. Moorman, T., and F. B. Reeves. 1979. The role of endomycorrhizae in revegetation practices in the semiarid West II. A bioassay to determine the effect of land disturbance on endomychorrhizal populations. Am. J. Bot. 66:14–18.CrossRefGoogle Scholar
  31. Murr, L. E. 1963. Plant growth response in a simulated electric environment. Nature (London) 201:1305–1306.CrossRefGoogle Scholar
  32. Oxley, I. J., M. B. Fenton, and G. R. Carmody. 1974. The effects of roads on populations of small mammals. J. App. Ecol. 11:51–59.CrossRefGoogle Scholar
  33. Presman, A. S. 1970. Electromagnetic Fields and Life. Plenum Press, New York, 366 pp.Google Scholar
  34. Reeves, F. B., D. Wagner, T. Moorman, and J. Kiel. 1979. The role of endomycorrhizae in revegetation practices in the semiarid West. I. A comparison of incidence of mycorrhizae in severely disturbed vs. natural environments. Am. J. Bot. 66:6–13.CrossRefGoogle Scholar
  35. Robinette, G. O. 1973. Energy and Environment. Kendall/Hunt Publishing Company, Dubuque, Iowa, 302 pp.Google Scholar
  36. Schreiber, R. K., and J. H. Graves. 1977. Powerline corridors as possible barriers to the movements of small mammals. Am. Midl. Naturalist 97:504–508.CrossRefGoogle Scholar
  37. Schreiber, R. K., W. C. Johnson, J. D. Story, C. Wenzel, and J. T. Kithcings. 1976. Effects of powerline rights-of-way on small, nongame mammal community structure. In: R. Tillman (Ed.), International Symposium on Environmental Concerns in Rights-of-Way Management. Mississippi State University Press, Starkville, Mississippi, pp. 263–273.Google Scholar
  38. Shrader, V. L. 1978. The effects of high voltage transmission lines on some aspects of plant growth and development. Unpublished Masters thesis, California State Polytechnic University, Pomona, California, 125 pp.Google Scholar
  39. Smith, P. D., J. Edell, F. Juak, and J. Young. 1978. Rehabilitation of eastern Sierra Nevada roadsides. Calif. Agric. 32(4):4–5.Google Scholar
  40. Strong, C. L. 1966. Stimulating plant growth with ultrasonic vibrations. Sci. Am. 215:100–102.CrossRefGoogle Scholar
  41. U.S. Department of the Interior, Bureau of Land Management. 1980. The California Desert Conservation Area. Plan Alternatives and Environmental Impact Statement. U.S. Government Printing Office, Washington, D.C., 436 pp.Google Scholar
  42. U.S. Department of the Interior and U.S. Department of Agriculture. 1970. Environmental Criteria for Electric Transmission Systems. U.S. Government Printing Office, Washington, D.C., 52 pp.Google Scholar
  43. Vasek, F. C. 1980. Creosote bush: Long-lived clones in the Mojave Desert. Am. J. Bot. 67:246–255.CrossRefGoogle Scholar
  44. Vasek, F. C., H. B. Johnson, and G. D. Brum. 1975. Effects of power transmission lines on the vegetation of the Mojave desert. Madrono 23:114–130.Google Scholar
  45. Weinbach, M. P. 1948. Electrical Power Transmission. The MacMillan Co., New York, 362 pp.Google Scholar
  46. Woodruff, L. F. 1938. Principles of Electric Power Transmission (2nd ed.). John Wiley and Sons, Inc., New York, 257 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1983

Authors and Affiliations

  • Gilbert D. Brum
  • Robert S. Boyd
  • Susan M. Carter

There are no affiliations available

Personalised recommendations