Skip to main content

Oceanic Fine- and Microstructure

  • Conference paper
  • 146 Accesses

Abstract

As recently as 20 years ago, we assumed that such oceanic parameters as temperature (T), salinity (S), and other chemical properties varied smoothly with depth. Earlier observational data came from widely spaced water bottle samples and reversing thermometers, and curves drawn through the discrete points obtained in this way were taken to represent the actual state of the ocean. Newly developed instruments have shown, however, that the vertical distributions of properties are often very far from smooth and typically consist of a series of quasihomogeneous. nearly horizontal layers, separated by regions in which the gradients are much larger. These variations, with layer scales ranging from about a meter to several hundred meters, are now called the oceanic finestructure; they are most prominent in the vicinity of fronts, across which there are large horizontal variations of T and S. Fluctuations of temperature, salinity, and velocity representing variations on a scale of about 10 centimeters and smaller have also been measured using rapidly responding sensors, and these constitute the turbulent microstructure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Denman, K. L., and M. Miyaki. 1973. Upper layer modification at Ocean Station Papa: observations and simulation. J. Phys. Oceanogr. 3, 185–196.

    Article  Google Scholar 

  • Dillon, T. M., and D. R. Caldwell. 1979. Catastrophic events in a surface mixed layer. Nature (London) 276, 601–602.

    Article  Google Scholar 

  • Eriksen, C. C. 1978. Measurements and models of fine structure, internal gravity waves and wave breaking in the deep ocean. J. Geophys. Res. 83, 2989–3009.

    Article  Google Scholar 

  • Fedorov, K. N. 1978. The thermohaline finestructure of the ocean (English translation). Pergamon, Oxford, 170 pp.

    Google Scholar 

  • Foster, T. D., and E. C. Carmack. 1976. Temperature and salinity structure in the Weddell Sea. J. Phys. Oceanogr. 6, 36–44.

    Article  Google Scholar 

  • Gargett, A. E. 1976. An investigation of the occurrence of oceanic turbulence with respect to finestructure. J. Phys. Oceanogr. 6, 139–156.

    Article  Google Scholar 

  • Gargett, A. E. 1978. Microstructure and finestructure in an upper ocean frontal regime. J. Geophys. Res. 83, 5123–5134.

    Article  Google Scholar 

  • Garrett, C. J. R. 1979. Mixing in the ocean interior. Dynam. Atmos. Oceans 3, 239–265.

    Article  Google Scholar 

  • Garrett, C. J. R., and W. H. Münk. 1979. Internal waves in the ocean. Ann. Rev. Fluid Mech. 11, 339–369.

    Article  Google Scholar 

  • Gibson, C. H. 1980. Fossil temperature, salinity and vorticity turbulence in the ocean. In: Marine Turbulence (J. Nihoul, Ed.). XI Ocean Hydrodynamics Colloquium Liège, May 1979. Elsevier, Amsterdam, pp. 221–257.

    Chapter  Google Scholar 

  • Gill, A. E., and J. S. Turner. 1976. A comparison of seasonal thermocline models with observation. Deep-Sea Res. 23, 391–401.

    Google Scholar 

  • Gordon, A. L., D. T. Georgi, and H. W. Taylor. 1977. Antarctic polar front zone in the western Scotia Sea- summer 1975. J. Phys. Oceanogr. 7, 309–328.

    Article  Google Scholar 

  • Gregg, M. C. 1975. Microstructure and intrusions in the California current. J. Phys. Oceanogr. 5, 253–278.

    Article  Google Scholar 

  • Gregg, M. C. 1976. Temperature and salinity microstructure in the Pacific Equatorial Undercurrent. J. Geophys. Res. 81, 1180–1196.

    Article  Google Scholar 

  • Gregg, M. C. 1980. The three-dimensional mapping of a small thermohaline intrusion. J. Phys. Oceanogr. 10, 1468–1492.

    Article  Google Scholar 

  • Gregg, M. C., and M. G. Briscoe. 1979. Internal waves, finestructure, microstructure and mixing in the ocean. Rev. Geophys. Space Phys. 17, 1524–1548.

    Article  Google Scholar 

  • Griffiths, R. W. 1979. The transport of multiple components through thermohaline diffusive interfaces. Deep-Sea Res. 26A, 383–397.

    Article  Google Scholar 

  • Haury, L. R., M. G. Briscoe, and M. H. Orr. 1979. Tidally-generated internal wave packets in Massachusetts Bay. Nature (London) 278, 312–317.

    Article  Google Scholar 

  • Huppert, H. E. 1971. On the stability of a series of double-diffusive layers. Deep-Sea Res. 18, 1005–1021.

    Google Scholar 

  • Huppert, H. E., and P. F. Linden. 1979. On heating a stable salinity gradient from below. J. Fluid Mech. 95, 431–464.

    Article  Google Scholar 

  • Huppert, H. E., and J. S. Turner. 1972. Double-diffusive convection and its implications for the temperature and salinity structure of the ocean and Lake Vanda. J. Phys. Oceanogr. 2. 456–461.

    Article  Google Scholar 

  • Huppert, H. E., and J. S. Turner. 1980. Ice blocks melting into a salinity gradient. J. Fluid Mech. 100, 367–384.

    Article  Google Scholar 

  • Joyce, T. M., W. Zenk, and J. M. Toole. 1978. The anatomy of the Antarctic polar front zone in the Drake Passage. J. Geophys. Res. 83, 6093–6113.

    Article  Google Scholar 

  • Lambert, R. B., and W. Sturges. 1977. A thermohaline staircase and vertical mixing in the thermocline. Deep-Sea Res. 24, 211–222.

    Article  Google Scholar 

  • Launder, B. E. 1976. Heat and mass transport. In: Turbulence (P. Bradshaw, Ed.). Springer-Verlag, Berlin, pp. 231–287.

    Google Scholar 

  • Leibovich, S., and S. Paolucci. 1980. The Langmuir circulation instability as a mixing mechanism in the upper ocean. J. Phys. Oceanogr. 10, 186–207.

    Article  Google Scholar 

  • Linden, P. F. 1976. The formation and destruction of fine-structure by double-diffusive processes. Deep-Sea Res. 23, 895–908.

    Google Scholar 

  • Magnell, B. 1976. Salt fingers observed in the Mediterranean outflow region (34°N, 11°W) using a towed sensor. J. Phys. Oceanogr. 6, 51 1–523.

    Google Scholar 

  • Mougall, T. J. 1981. Double-diffusive convection with a non-linear equation of state. II. Laboratory experiments and their interpretation. Prog. Oceanogr. 10, 91–121.

    Article  Google Scholar 

  • Mwan, A. D. 1971. Degeneration of resonantly-excited standing internal gravity waves. J. Fluid Mech. 50, 431–448.

    Article  Google Scholar 

  • Mwan, A. D. 1973. Interactions between internal gravity waves and their traumatic effect on a continuous stratification. Boundary Layer Meteorol. 5, 159–175.

    Article  Google Scholar 

  • Mwan, A. D., and R. M. Robinson. 1975. Parametric instability of internal gravity waves. J. Fluid Mech. 67, 667–687.

    Article  Google Scholar 

  • Niiler, P. P., and E. B. Kraus. 1977. One-dimensional models of the upper ocean. In: Modelling and prediction of the upper layers of the ocean (E. B. Kraus, Ed.). Pergamon, Oxford, pp. 143–172.

    Google Scholar 

  • Osborn, T. R., and C. S. Cox. 1972. Oceanic fine structure. Geophys. Fluid Dynam. 3, 321–345.

    Article  Google Scholar 

  • Pollard, R. T., P. B. Rhines, and R. O. R. Y. Thompson. 1973. The deepening of the wind mixed layer. Geophys. Fluid Dynam. 3, 381–404.

    Google Scholar 

  • Price, J. F., C. N. K. Mooers. and J. C. van Leer. 1978. Observation and simulation of storm-induced mixed layer deepening. J. Phys. Oceanogr. 8, 582–599.

    Article  Google Scholar 

  • Ruddick, B. R., and J. S. Turner. 1979. The vertical length scale of double-diffusive intrusions. Deep-Sea Res. 26, 903–913.

    Article  Google Scholar 

  • Schmitt, R. W. 1981. Form of the temperature-salinity relationship in the Central water: evidence for double-diffusive mixing. J. Phys. Oceanogr. 11, 1015–1026.

    Article  Google Scholar 

  • Schmitt, R. W., and D. L. Evans. 1978. An estimate of the vertical mixing due to salt fingers based on observations in the North Atlantic Central water. J. Geophys. Res. 83, 2913–2920.

    Article  Google Scholar 

  • Scotti, R. S., and G. M. Corcos. 1969. Measurements on the growth of small disturbances in a stratified shear layer. Radio Sci. 4, 1309–1313.

    Article  Google Scholar 

  • Sherman, F. S., J. Imberger, and G. M. Corcos. 1978. Turbulence and mixing in stably stratified waters. Ann. Rev. Fluid Mech. 10, 267–288.

    Article  Google Scholar 

  • Thompson, R. O. R. Y. 1976. Climatological numerical models of the surface mixed layer of the ocean. J. Phys. Oceanogr. 6, 496–503.

    Article  Google Scholar 

  • Thorpe, S. A. 1973. Experiments on instability and turbulence in a stratified shear flow. J. Fluid Mech. 61, 731–751.

    Article  Google Scholar 

  • Thorpe, S. A. 1978a. On the slope and breaking of finite amplitude internal gravity waves in a shear form. J Fluid Mech. 85, 7–31.

    Article  Google Scholar 

  • Thorpe, S. A. 1978b. The near-surface mixing layer in stable heating conditions. J. Geophys. Res. 33, 2875–2885.

    Article  Google Scholar 

  • Tranter, D. J., R. R. Parker, and G. R. Cresswell. 1980. Are warm-core eddies unproductive? Nature (London) 284, 540–542.

    Article  Google Scholar 

  • Turner, J. S. 1973. Buoyancy Effects in Fluids. Cambridge University Press, Cambridge, 367 pp.

    Google Scholar 

  • Turner, J. S. 1978. Double-diffusive intrusions into a density gradient. J. Geo- phys. Res. 83, 2887–2901.

    Article  Google Scholar 

  • Turner, J. S. 1979. Laboratory models of double-diffusive processes in the ocean. Proc. 12th Symposium on Naval Hydrodynamics. National Academy of Science, Washington, D.C., pp. 596–606.

    Google Scholar 

  • Turner, J. S. 1980. Small-scale mixing processes. In: Evolution of Physical Oceanography (B. Warren and C. Wunsch, Ed.). MIT Press, Cambridge, Mass., pp. 236–262.

    Google Scholar 

  • Turner, J. S. 1982. The influence of molecular processes on turbulence and mixing in the ocean. In: Turbulence in the Ocean (J. D. Woods, Ed.). Springer-Verlag, Berlin.

    Google Scholar 

  • Turner, J. S., and L. B. Gustafson. 1978. The flow of hot saline solutions from vents in the sea floor: some implications for exhalative sulfide and other ore deposits. Econ. Geol. 73, 1082–1 100.

    Google Scholar 

  • Voorhis, A. D., D. C. Webb, and R. C. Millard. 1976. Current structure and mixing in the shelf/slope water front south of New England. J. Geophys. Res. 81,3695–3708.

    Article  Google Scholar 

  • Williams, A. J. 1975. Images of ocean microstructure. Deep-Sea Res. 22, 811–829.

    Google Scholar 

  • Williams, G. O. 1976. Repeated profiling of microstructure lenses with a mid-water float. J. Phys. Oceanogr. 6, 281–292.

    Article  Google Scholar 

  • Woods, J. D. 1968. Wave-induced shear instability in the summer thermocline. J. Fluid Mec. 32, 791–800.

    Article  Google Scholar 

  • Woods, J. D. (Ed.). 1982. Turbulence in the Ocean. Springer-Verlag, Berlin.

    Google Scholar 

  • Wunsch, C. 1976. Geographical variability of the internal wave field: a search for sources and sinks. J. Phys. Oceanogr. 6, 471–485.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag New York Inc.

About this paper

Cite this paper

Turner, J.S. (1983). Oceanic Fine- and Microstructure. In: Brewer, P.G. (eds) Oceanography. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5440-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5440-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-5442-3

  • Online ISBN: 978-1-4612-5440-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics