Fritz John pp 498-531 | Cite as

Delayed Singularity Formation in Solutions of Nonlinear Wave Equations in Higher Dimensions

  • Fritz John
Part of the Contemporary Mathematicians book series (CM)


It is well known that solutions u(t, x) of quasi-linear homogeneous hyperbolic equations in one space dimension tend to develop singularities after a finite time (see [1], [2]).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Lax, P. D., Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Mathematical Physics, 5, 1964, pp. 611–613.CrossRefGoogle Scholar
  2. [2]
    John, F., Formation of singularities in one-dimensional nonlinear wave propagation, Comm. Pure Appl. Math., 27, 1974, pp. 377–405.CrossRefGoogle Scholar
  3. [3]
    Schauder, J., Das Anfangswertproblem einer quasilinearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fundamenta Mathematica, 24, 1935, pp. 213–246.Google Scholar
  4. [4]
    Courant, R., Friedrichs, K. O., and Lewy, H., Über die partiellen Differentialgleichungen der mathematischen Physik, Math. Annalen, 100, 1928, pp. 32–74.CrossRefGoogle Scholar
  5. [5]
    Friedrichs, K. O., Symmetrie hyperbolic linear differential equations, Comm. Pure Appl. Math., 7, 1954, pp. 345–392.Google Scholar
  6. [6]
    Courant, R., and Lax, P. D., On nonlinear partial differential equations with two independent variables, Comm. Pure Appl. Math., 2, 1949, pp. 255–274.Google Scholar
  7. [7]
    Courant, R., and Lax, P. D., Cauchy’s problem for nonlinear hyperbolic differential equations in two independent variables, Scritti Matematici offerti a Mauro Picone. Annali di Matematica Pura ed Applicata, 39–40, 1955, pp. 571–575.Google Scholar
  8. [8]
    F. John, Lectures on Advanced Numerical Analysis, Gordon & Breach, 1967.Google Scholar
  9. [9]
    Richtmyer, R. D., and Morton, K. W., Difference Methods for Initial Value Problems, Second Edition, Interscience Publishers, 1967.Google Scholar
  10. [10]
    Courant, R., and Hilbert, D., Methods of Mathematical Physics, Vol. II, Interscience Publishers, 1962.Google Scholar
  11. [11]
    von Wahl, Wolf, L p- decay rates for homogeneous wave equations, Math. Z., 120, 1971, pp. 93–106.CrossRefGoogle Scholar
  12. [12]
    John, F., Delayed singularity formation for solution of nonlinear partial differential equations in higher dimensions, Proc. of the National Academy of Sciences, U.S.A., Vol. 73, 2, 1976, pp. 281–282.CrossRefGoogle Scholar
  13. [13]
    Fischer, A. E., and Marsden, J. E., The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I, Commun. Math. Phys., 28, 1972, pp. 1–38.CrossRefGoogle Scholar
  14. [14]
    Dionne, P. A., Problème de Cauchy hyperbolique et espaces fonctionnels de S. L. Sobolev, Coll. Int. du C.N.R.S., No. 117, Les Équations aux Dérivées Partielles, 1962, pp. 25–31.Google Scholar
  15. [15]
    Gårding, L., Problème de Cauchy pour les systèmes quasi-linéaires d’ordre un strictement hyperboliquest Coll. Int. du C.N.R.S., No. 117, Équations aux Dérivées Partielles, 1962, pp. 33–40.Google Scholar
  16. [16]
    Gårding, L., Energy inequalities for hyperbolic systems, Differential Analysis, ( Bombay Coll. ), 1964, pp. 209–225.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Fritz John

There are no affiliations available

Personalised recommendations