Electrophysiological Studies of the Possible Role of Trace Amines in Synaptic Function

  • Roland S. G. Jones


Using electrophysiological techniques the actions of trace amines have been studied at the single cell level in the CNS. The results indicate that many of the neuronal effects of trace amines may be attributable to actions on specific receptors and as such they may possess transmitter function. In addition small amounts of these amines are able to strongly modify neuronal responses to established aminergic and non-aminergic transmitters and may also function as neuromodulators.


Purkinje Cell Cortical Neurone Caudate Nucleus Excitatory Response Median Raphe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian G. K. and Haigler H. J. (1975) Hallucinogenic indoleamines: Preferential action upon presynaptic serotonin receptors. Psychopharm. Comm. 1, 619–629.Google Scholar
  2. Axelrod J. and Saavedra J. M. (1977) Octopamine. Nature 265, 501–504.CrossRefGoogle Scholar
  3. Bevan P., Bradshaw C. M., Pun, R. Y. K., Slater T. N., and Szabadi E. (1978) Comparison of the responses of single cortical neurones to tyramine and noradrenaline: Effects of desipramine. Br. J. Pharmac. 63, 651–657.Google Scholar
  4. Boakes R. T., Dua P. R., and Baker G. B. (1976) Actions of microiontophoretically applied p- and m-tyramine on caudate neurones. Abs. Eur. Soc. Neurochem., p. 59c.Google Scholar
  5. Boulton A. A. (1979) Trace amines in the central nervous system. Int. Rev. Biochem. 26, 179–206.Google Scholar
  6. Cascio C. S. and Kellar K. J. (1982) 3H-Tryptamine: Characterization of binding sites in rat brain. Abs. Soc. Neurosci. 8, 783.Google Scholar
  7. Cox B., Lee T. F., and Martin D. (1981) Different hypothalamic receptors mediate 5-HT-and tryptamine-induced core temperature changes in the rat. Br. J. Pharmac. 72, 477–482.Google Scholar
  8. Cox B., Davis A., Juxon V., Lee T. F., and Martin D. (1983) A role for an indoleamine other than 5-hydroxytryptamine in the hypothalamic thermoregulatory pathways of the rat. J. Physiol. 337, 441–450.PubMedGoogle Scholar
  9. Curtis D. R. (1962) Action of 3-hydroxytyramine and some tryptamine derivatives on spinal neurones. Nature 164, 292.CrossRefGoogle Scholar
  10. Curtis D. R. and Davis R. (1962) Pharmacological studies upon neurones of the lateral geniculate nucleus of the cat. Br. J. Pharmac. 18, 217–246.Google Scholar
  11. Dao W. P. C. and Walker R. J. (1980a) Octopamine responses of neurones in the rat thalamus. Br. J. Pharmac. 68, 132P.Google Scholar
  12. Dao W. P. C. and Walker R. J. (1980b) Effect of cyproheptadine on the octopamine-induced responses in the mammalian central nervous system. Experientia 36, 584–585.PubMedCrossRefGoogle Scholar
  13. Dourish C. T. and Greenshaw A. J. (1983) Effects of intraventricular tryptamine and 5-HT on spontaneous motor activity in the rat. Res. Comm. Psychol. Psychiat. Behav. 8, 1–9.Google Scholar
  14. Engberg I., Flatman J. A., and Kadzielawa K. (1976) Lack of specificity of motoneurone responses to microiontophoretically applied phenolic amines. Acta Physiol. Scand. 96, 137–139.PubMedCrossRefGoogle Scholar
  15. Freidman R. N. (1979) Tryptamine-induced alterations of acetylcholine release at a neuromuscular junction. Abs. Soc. Neurosoc. 5, 480.Google Scholar
  16. Freidman R. N., Shank R. P., and Freeman A. R. (1981) The effects of tryptamine on transmitter release at a lobster neuromuscular junction. Brain Res. 214, 101–111.CrossRefGoogle Scholar
  17. Gerschenfeld H. M. and Stefani E. (1966) An electrophysiological study of 5-HT receptors of neurones in the molluscan nervous system, J. Physiol. 185, 684–700.PubMedGoogle Scholar
  18. Henwood R. W., Boulton A. A, and Phillis J. W. (1980) Iontophoretic studies of some trace amines in the mammalian CNS. Brain Res. 164, 347–351.CrossRefGoogle Scholar
  19. Hicks T. P. and McLennan H. (1978a) Comparison of the actions of octopamine and catecholamines on single neurones of the rat cerebral cortex. Br. J. Pharmac. 64, 485–491.Google Scholar
  20. Hicks T. P. and McLennan H. (1978b) Actions of octopamine upon dorsal horn neurones of the spinal cord. Brain Res. 157, 402–406.PubMedCrossRefGoogle Scholar
  21. Hoffer B. J., Siggins G. R., and Bloom F. E. (1971) Studies on norepinephrine-containing afferents to Purkinje cells of rat cerebellum. II. Sensitivity of Purkinje cells to norepinephrine and related substances administered by microiontophoresis. Brain Res. 25, 523–534.PubMedCrossRefGoogle Scholar
  22. Jones R. S. G. (1981a) Specific enhancement of neuronal responses to catecholamines by p-tyramine. J. Neurosci. Res. 6, 49–61.Google Scholar
  23. Jones R. S. G. (1981b) In vivo pharmacological studies on the interactions between Tryptamine and 5-hydroxytryptamine. Br. J. Pharmac. 73, 485–493.Google Scholar
  24. Jones R. S. G. (1982a) Noradrenaline-octopamine interactions on cortical neurones in the rat. Eur. J. Pharmac. 77, 159–162.Google Scholar
  25. Jones R. S. G. (1982b) A comparison of the responses of cortical neurones to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmac. 21, 209–214.CrossRefGoogle Scholar
  26. Jones R. S. G. (1982c) Responses of cortical neurones to stimulation of the nucleus raphe medianus: A pharmacological analysis of the role of indoleamines. Neuropharmac. 21, 511–520.Google Scholar
  27. Jones R. S. G. (1982d) Tryptamine modifies cortical neurone responses evoked by stimulation of nucelus raphe medianus. Brain Res. Bull. 8, 435–437.Google Scholar
  28. Jones R. S. G. and Boulton A. A. (1980) Interactions between p-tyramine, m-tyramine or β-phenylethylamine and dopamine on single neurons in the cortex and caudate nucleus of the cat. Can. J. Physiol. Pharmac. 58, 222–227.CrossRefGoogle Scholar
  29. Jones R. S. G. and Boulton A. A. (1981) Tryptamine and 5-hydroxytryptamine’s actions and interactions on cortical neurones in the rat. Life Sci. 27, 1849–1856.CrossRefGoogle Scholar
  30. Jones R. S. G. and Broadbent J. (1982a) Further studies on the role of indoleamines in responses of cortical neurones evoked by stimulation of the nucleus raphe medianus: The effects of precursor loading. Neuropharmac. 21, 1273–1278.CrossRefGoogle Scholar
  31. Jones R. S. G. and Broadbent J. (1982b) Differential effects of fluoxetine and zimelidine on the uptake of 5-hydroxytryptamine and tryptamine by cortical slices and on responses of cortical neurones to stimulation of the nucleus raphe medianus. Eur. J. Pharmac. 81, 681–685.Google Scholar
  32. Jones R. S. G., Juorio A. V., and Boulton A. A. (1983) Changes in levels of dopamine and tyramine in rat caudate nucleus following alterations of impulse flow in the nigrostriatal pathway. J. Neurochem. 40, 396–401.PubMedCrossRefGoogle Scholar
  33. Juorio A. V. (1979) Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse. Br. J. Pharmac. 66, 377–384.Google Scholar
  34. Juorio A. V. and Jones R. S. G. (1981) The effects of mesencephalic lesions on tyramine and dopamine in the caudate nucleus of the rat. J. Neurochem. 36, 1898–1903.PubMedCrossRefGoogle Scholar
  35. Kellar K. J. and Cascio C. S. (1982) [3H]-Tryptamine: High affinity binding sites in rat brain. Eur. J. Pharmac. 78, 475–478.Google Scholar
  36. Kostopoulos G. K. and Yarbrough G. G. (1975) Microiontophoretic studies of the effects of false transmitter candidates and amphetamine on cerebellar Purkinje cells. J. Pharm. Pharmac. 27, 408–413.Google Scholar
  37. Krnjevic K. (1965) Actions of drugs on single neurones in the cerebral cortex. Brit. Med. Bull. 21, 10–14.PubMedGoogle Scholar
  38. Krnjevie K. and Phillis J. W. (1963) Actions of certain amines on cerebral cortical neurones. Br. J. Pharmac. 20, 471–490.Google Scholar
  39. Larson A. A. (1981) Changes in pain-reflexes after intrathecal administration of Tryptamine HCl in the rat. Fed. Proc. 40, 284.Google Scholar
  40. Larson A. A. (1982) Nociception is enhanced by the intrathecal injection of 5-methoxy-N,N- dimethyltryptamine in the rat. Neurosci. Lett. 33, 323–328.PubMedCrossRefGoogle Scholar
  41. Martin W. R., Thompson J. A., and Nozaki M. (1976) Physiologic evidence for descending tryptaminergic pathways in the spinal cord. Life Sci. 19, 1383–1386.PubMedCrossRefGoogle Scholar
  42. Stoof J. C., Liem A. L., and Mulder A. H. (1976) Release and receptor stimulating properties of p-tyramine in rat brain. Arch. Int. Pharmacodynam. 220, 62–71Google Scholar

Copyright information

© The Humana Press Inc. 1984

Authors and Affiliations

  • Roland S. G. Jones
    • 1
  1. 1.Biology Research LaboratoriesCiba-Geigy AGBaselSwitzerland

Personalised recommendations