Transport of Proteins and Signal Recognition

  • Odd Nygård
  • Peter Westermann

Abstract

We provide support for the belief that the mRNA for a given protein contains the entire information for its final localization in a cell or its secretion out of a cell. If mRNA coding for carp preproinsulin is injected into Xenopus cocytes, proinsulin is found in the medium. Similarly, if the 26S-RNA coding for the structural proteins of the Semliki-Forest-Virus is injected, the envelope proteins are found on the outer surface of the oocytes. Transport and processing of the membrane proteins are not dependent on glycosylation. However, if plant storage globulin mRNAs are injected into oocytes, the translation products are found to be secreted rather than stored. Obviously, in this case the destination of the proteins is determined in part by the cellular apparatus.

Carp preproinsulin, like most other secretory proteins, contains a N-terminal, cleavable signal peptide. Recombinant plasmids were constructed which contained the complete coding sequence of carp preproinsulin placed into the coding region of prokaryotic genes so that fused translation products are expected. In many cases, the eucaryotic signal peptide was found to transport the insulin antigen out of E.coli cells even if its sequence was internal. Cleavage of the signal peptide is apparently correct since a proinsulin-like material is found in the periplasm. The results support our hypothesis according to which the first stretch of hydrophobic amino acids, following an unfolded part of the polypeptide chain or a complete folding domain with a hydrophilic surface, operates as signal for translocation.

Keywords

Carbohydrate Codon Recombination Electrophoresis Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassüner, R., Huth, A., Manteuffel, R, & Rapoport, T.A. (1983) Eur.J.Biochem.,in pressGoogle Scholar
  2. Blobel, G. (1980) Proc.Kat.Acad.Sci. 77, 1496–1500.CrossRefGoogle Scholar
  3. Blobel, G. & Dobberstein,B. (1975) J. Cell Biol. 67, 852–862.PubMedCrossRefGoogle Scholar
  4. Braell, W.A. & Lodish, H.F. (1982) Cell 28, 23–31.PubMedCrossRefGoogle Scholar
  5. Colman, A. & Morser, J. (1979) Cell 17, 517–526.PubMedCrossRefGoogle Scholar
  6. Finkelstein, A. & Ptitsyn, O.B. (1977) Biopolymers 16, 525–529.PubMedCrossRefGoogle Scholar
  7. Finkelstein, A,, Bendzko, P. & Rapoport, T.A. (1983) FEBS Lett., submittedGoogle Scholar
  8. Garoff, H.,Frischauf, A.-M., Simons, K..Lehrach, H. & Delius, H. (1980) Nature (Lond.) 288, 236–241.CrossRefGoogle Scholar
  9. Gibson, R., Schlesinger,S. & Kornfeld,S (1979) J. BiolChera. 254, 3600–3607.Google Scholar
  10. Gibson, R., Kornfeld, S. & Schlesinger, S.(1981)Trends Biochem. Sci, 5, 290–293.CrossRefGoogle Scholar
  11. Hahn, V., Winkler,J., Rapoport, T.A., Liebscher, D.H., Coutelle,C. & Rosenthal,S. (1983) Nucl.Acids Res., in press.Google Scholar
  12. Kreil, G. (1981) Ann.Rev.Biochem. 50, 317–348.PubMedCrossRefGoogle Scholar
  13. Lane, C.D.,Coiman, A.,Mohun, T., Morser, J., Champion,J., Kourides, I., Craig, R., Higgins, S., James,T.C.,Applebaum, S.W., Ohlson. R.I., Paucha, E.,Houghton, M., Matthews, J. & Miflin, B.J. (1980) Eur.J. Biochem. 111, 225–235.Google Scholar
  14. Lane, C.D., Champion, J.,Haiml, L. & Kreil, G. (1981) Eur. J. Biochem. 213, 273–281.CrossRefGoogle Scholar
  15. Leavitt, R., Schlesinger, S. & Kornfeld, S. (1977) J. Biol.Chera. 252, 9018–9023.Google Scholar
  16. Lebleu, B., Hubert, E., Content, J., DeWit, L., Braude, I.A. & LeClerq, E. (1978) Biochem. Biophys. Res. Commun. 82, 665–673.PubMedCrossRefGoogle Scholar
  17. Liebschier, D.H., Coutelle, C.,Rapoport, T.A., Hahn, V. Rosenthal,S.,Prehn, S. & Williamson, R. (1980) Gene 9, 233–246.CrossRefGoogle Scholar
  18. Makower, A., Dettmer, R., Rapoport, T.A.,Knospe,S., Behlke,J.,Prehn,S.,Franke,P.,Etzold,G. & Rosenthal, S. (1982) Eur.J.Biochem. 122, 339–345.PubMedCrossRefGoogle Scholar
  19. Marbaix, G. & Huez, G. (198C)in: Transfer of Cell Constituents into Eucaryotic Cells(Celis,ed) pp.347–381, Plenum Press, New York, LondonGoogle Scholar
  20. Meek, R.L., Walsh, A. & Palmiter, R.D. (1982) J. Biol. Chem. 257, 12245–12251.PubMedGoogle Scholar
  21. Michaelis, S. & Beckwith, J. (1982) Ann.Rev.Microbiol. 36, 435–465.CrossRefGoogle Scholar
  22. Rapoport, T.A., (1981) Eur.J.Biochem. 115, 665–669.PubMedCrossRefGoogle Scholar
  23. Rapoport, T.A., Thiele, B., Prehn, S., Marbaix, G., Cleuter, Y.. Hubert, E. & Huez, G. (1978) Eur.J. Biochera. 87, 229–233.CrossRefGoogle Scholar
  24. Seeburg. P.H., Shine, J., Martial, J.A., Ivarie, R.D., Morris, J.A., Ullrich, A., Baxter, J.B. & Goodman, H.M. (1978) Nature (Lond.) 276, 795–798.CrossRefGoogle Scholar
  25. Sutcliff, J. (1978) Cold Spring Hard. Symp. quant. Biol. 49, 77–90.Google Scholar
  26. Talmadge, K., Stahl, S. & Gilbert, W. (1980a) Proc. Nat.Acad.Sci. 77, 3369–3373.PubMedCrossRefGoogle Scholar
  27. Talmadge, K..Kaufman, J. & Gilbert, W. (1980b) Proc. Nat.Acad.Sci. 77, 3988–3992.Google Scholar
  28. Talmadge, K., Brosius, J. & Gilbert, W. (1981) Nature (Lond.) 294, 176–178.CrossRefGoogle Scholar
  29. Walter, P. & Blobel, G. (1981) J.Cell Biol. 91, 557–561.PubMedCrossRefGoogle Scholar

Copyright information

© The Human Press Inc. 1983

Authors and Affiliations

  • Odd Nygård
    • 1
  • Peter Westermann
    • 2
  1. 1.The Wenner-Gren InstituteUniversity of StockholmStockholmSweden
  2. 2.Central Institute of Molecular BiologyAcademy of Sciences of GDRBerlin-BuchGermany

Personalised recommendations