Skip to main content

Intracellular Transport of Endocytosed Glycoproteins in Rat Hepatocytes

  • Chapter
  • 93 Accesses

Abstract

The mammalian liver consists of four main cell types: the parenchymal cells, the macrophages (Kupffer cells), the endothelial cells, and the stellate cells (1). Apart from the stellate cells all of these cell types are able to remove macromolecules from the blood by endocytosis. This function contributes to the homeostatic system which keeps the concentration of plasma proteins and lipids relatively constant. The various ligands endocytosed by the liver are to some extent divided between the cells. For instance, only hepatocytes take up chylomicron remnants or asialoglycoproteins (2). Endothelial cells are particularly active in the uptake of proteins with increased negative charge such as acetylated LDL (3) or formaldehydetreated albumin (4), while Kupffer cells are specialized phagocytic cells. The main function of the stellate cells seems to be storage of retinol received from the hepatocytes (5,6).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wisse, E., J. Ultrastructure Res. 46, 393 (1974)

    Article  CAS  Google Scholar 

  2. Norum, K.R., Berg, T., and Drevon, C.A., in L.A. Carlson and B. Pernow (Editors), Metabolic risk factors in ischemic caridiovascular disease, Raven Press, New York, 1982,p. 35.

    Google Scholar 

  3. Nagelkerke, J.F., Barto, K.P., and Van Berkel, T.J.C., in D.L. Knook and E. Wisse (Editors), Sinusoidal liver cells, Elsevier Biomedical Press, Amsterdam, 1982, p. 319.

    Google Scholar 

  4. Blomhoff, R., Eskild, W., and Berg, T. (1983) (submitted).

    Google Scholar 

  5. Blomhoff, R., Helgerud, P., Rasmussen, M., Berg, T., and Norum, K.R., Proc. Natl. Acad. Sci. (USA) 79, 7326 (1982).

    Article  CAS  Google Scholar 

  6. Berg, T., Blomhoff, R., and Norum, K.R., in D.L. Knook and E. Wisse (Editors),Sinusoidal liver cells,Elsevier Biomedical Press, Amsterdam, 1982, p. 37.

    Google Scholar 

  7. Tolleshaug, H., Berg, T., Nilsson, M., and Norum, K.R., Biochim. Biophys. Acta, 499, 73 (1977)

    Article  PubMed  CAS  Google Scholar 

  8. Nilsson, A, and Akesson, B., FEBS-letters, 51, 219, (1975).

    Article  PubMed  CAS  Google Scholar 

  9. Higa, Y., Oshiro, S., Kino, K., Tsuno, H., and Nakajima, H., J. Biol. Chem., 256, 12322 (1981).

    Google Scholar 

  10. Ose, L., Ose, t:, Reinertsen, R., and Berg, T, Exp. Cell Res., 126, 109 (1980).

    Article  PubMed  CAS  Google Scholar 

  11. Tolleshaug, H., Int. J. Biochem., 13, 45 (1981).

    Article  PubMed  CAS  Google Scholar 

  12. Blomhoff, R., Tolleshaug, H., and Berg, T., J. Biol. Chem. 257, 7456 (1982).

    PubMed  CAS  Google Scholar 

  13. Tolleshaug, H., and Berg, T., Exp. Cell Res. 134, 207 (1981).

    Article  PubMed  CAS  Google Scholar 

  14. Kolset, S.O., Tolleshaug, H., and Berg, T., Exp. Cell Res. 122, 159 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. Tartakoff, A.M., and Bassalli, P., J. Exp. Med. 146, 1332 (1977).

    Article  PubMed  CAS  Google Scholar 

  16. Berg, T., Blomhoff, R., N£Ss, L., Tolleshaug, H., and Drevon, C.A., Exp. Cell Res. (In press)

    Google Scholar 

  17. Tolleshaug, H., Chindemi, P.A., and Regoeczi, E., J. Biol. Chem. 256, 6526 (1981).

    PubMed  CAS  Google Scholar 

  18. Tycko, B., and Maxfield, F.R., Cell, 28, 643 (1982).

    Google Scholar 

  19. Geuze, H.J., Slot, J.W., Strous, G.J.A.M., Lodish, H.F., and Schwartz, A.L., Cell, 32, 277 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. Berg, T., and Tolleshaug, H., Biochem. Pharmacol., 29, 917 (1980).

    Article  PubMed  CAS  Google Scholar 

  21. Ose, L., Ose, T., Norum, K.R., and Berg, T., Biochim. Biophys. Acta, 620, 120 (1980).

    PubMed  CAS  Google Scholar 

  22. Hubbard, A.L., Wilson, G., Ashwell, G., and Stukenbrok, H., J. Cell Biol., 83, 47 (1979).

    Article  PubMed  CAS  Google Scholar 

  23. Maynard, Y., and Baenziger, J.U., J. Biol. Chem. 257, 3788 (1982).

    PubMed  CAS  Google Scholar 

  24. Mori, K., Kawasaki, T., and Yamashina, I., Arch. Biochem. Biophys. 222, 542 (1983).

    Article  PubMed  CAS  Google Scholar 

  25. Lehle, L., Eur. J. Biochem., 109, 589 (1980).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 The Human Press Inc.

About this chapter

Cite this chapter

Nygård, O., Westermann, P. (1983). Intracellular Transport of Endocytosed Glycoproteins in Rat Hepatocytes. In: Abraham, A.K., Eikhom, T.S., Pryme, I.F. (eds) Protein Synthesis. Humana Press. https://doi.org/10.1007/978-1-4612-5310-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5310-5_20

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9780-2

  • Online ISBN: 978-1-4612-5310-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics