Trophic Influences of Nerve on Skeletal Muscle Sarcolemma

  • Peter L. Jeffrey
  • John A. P. Rostas
  • Wing Nang Leung
Part of the Experimental and Clinical Neuroscience book series (ECN)

Abstract

Following surgical denervation, the combined effects of the absence of neural impulse activity and neurotrophic (non-impulse) factors are responsible for the changes reported in muscle metabolism. This study attempts to evaluate the relative contributions of these factors by comparing the effects of denervation and the blockage of neural impulse activity on various biochemical parameters of mixed muscle sarcolemma. Muscle paralysis was induced by repeated injection of Tetrodotoxin (TTx) to the sciatic nerve. After seven days of inactivity the isolated sarcolemma was analyzed for protein and glycoprotein composition, Na+/K+ ATPase activity, Concanavalin A binding to intact sarcolemma and to carbohydrate components separated in SDS-polyacrylamide gels and sialyl and galactosyl transferase activity.

The results have shown that following muscle inactivity all of the parameters except glycosyl transferases changed in a similar manner but to a lesser degree than denervation. It is concluded that trophic factors in addition to neural impulse activity play a role in the regulation of a number of surface membrane properties. These results are compared with other membrane parameters which are known to be under a similar control.

Keywords

Sugar Sucrose Hydrate Carbohydrate EDTA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, K.E., and Edström, A. (1973). Brain Res. 50, 125.PubMedCrossRefGoogle Scholar
  2. Andrew, C.G., and Appel, S.H. (1973). J. Biol. Chem. 248, 5156.PubMedGoogle Scholar
  3. Boegman, R.J., and Scarth, R. (1981), Exp. Neurol. 73, 37.PubMedCrossRefGoogle Scholar
  4. Blunt, R.J., and Vrbova, G. (1975), Pflüegers Arch. 357, 187.CrossRefGoogle Scholar
  5. Bray, J.J., Hubbard, J.I., and Mills R.G. (1979). J. Physiol. (London), 297, 479.Google Scholar
  6. Drachman, D.B., Stanley, E.B., Pestronk, A., Griffin, J.W., and Price, D.L. (1982). Jnl. Neurosa. 2, 232.Google Scholar
  7. Guth, L. (1968). Physiol. Rev., 48, 645.PubMedGoogle Scholar
  8. Guth, L., Kemerer, V.F., Samaras, T.A., Warnick, J.E., and Albuquerque, E.X. (1981). Exp, Neurol. 73, 20.CrossRefGoogle Scholar
  9. Gutman, E. (1976). Ann. Rev. Physiol., 38, 177.CrossRefGoogle Scholar
  10. Gutman, E., Vodicka, Z., and Zclena, J. (1955). Physiol. Bohemoslov., 4, 200.Google Scholar
  11. Inestrosa, N.C., and Fernandez, H.L. (1982). Muscle & Serve, 5, 33.CrossRefGoogle Scholar
  12. Jeffrey, P.L., and Appel, S.H. (1978). Exp. Neurol. 61, 432.PubMedCrossRefGoogle Scholar
  13. Jeffrey, P.L., Leung, W.N., and Rostas, J.A.P. (1979). In “Muscle, Nerve and Brain Degeneration” (A.D. Kidman and J.K. Tomkins, eds.), p. 32. Excerpta Medica, Amsterdam.Google Scholar
  14. Jeffrey, P.L., Leung, W.N., and Rostas, J.A.P. (1981). In “New Approaches to Nerve and Muscle Disorders. Basic and Applied Contributions” (A.D. Kidman, J.K. Tomkins and R.A. Westerman, eds.), p.66. Excerpta Medica Amsterdam.Google Scholar
  15. Jeffrey, P.L., Leung, W.N., and Rostas, J.A.P. (1983). In “Molecular Aspects of Neurological Disorders” (L. Austin and P.L. Jeffrey, eds.) p83. Academic Press, Sydney.Google Scholar
  16. Lavoie, P.A., Collier, B., and Tenenhouse, A. (1976). Nature 260, 349.PubMedCrossRefGoogle Scholar
  17. Lentz, T.L., Addis, J.S., and Chester, J. (1981). Exp. Neurol. 73, 542.PubMedCrossRefGoogle Scholar
  18. Leung, W.N., Jeffrey, P.L., and Rostas, J.A.P. (1982). Neurosci. Letts. 30, 31.CrossRefGoogle Scholar
  19. Oh, T.H., and Markelonis, G.J. (1978). Science 200, 337.PubMedCrossRefGoogle Scholar
  20. Oh, T.H., Markelonis, G.J., Reier, P.J., and Zalewski, A.A. (1980). Exp. Neurol. 67, 646.PubMedCrossRefGoogle Scholar
  21. Pestronk, A., Drachman, D.B., and Griffin, J.W. (1976a). Nature 260, 352.PubMedCrossRefGoogle Scholar
  22. Pestronk, A., Drachman, D.B., and Griffin, J.W. (1976b). Nature 264, 787.PubMedCrossRefGoogle Scholar
  23. Post, R.L., and Sen, A.K. (1967). Methods Enzymol., 10, 762.CrossRefGoogle Scholar
  24. Stanley, E.F., and Drachman, D.B. (1979). Exp. Neurol. 64, 231.PubMedCrossRefGoogle Scholar
  25. Stanley, E.F., and Drachman, D.B. (1980). Exp. Neurol. 69, 253.PubMedCrossRefGoogle Scholar
  26. Taussky, H.H., and Shorr, E. (1953). J. Biol. Chem., 202, 675.PubMedGoogle Scholar
  27. Wan, K.K., and Boegman, R.J. (1980). Exp. Neurol. 70, 475.PubMedCrossRefGoogle Scholar
  28. Wan, K.K., and Boegman, R.J. (1981a). Exp. Neurol. 74, 447.PubMedCrossRefGoogle Scholar
  29. Wan, K.K., and Boegman, R.J. (1981b). Exp. Neurol. 74, 439.PubMedCrossRefGoogle Scholar
  30. Younkin, S.G., Brett, R.S., Davey, B., and Younkin, L.H. (1978). Science 200, 1292.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1983

Authors and Affiliations

  • Peter L. Jeffrey
    • 1
  • John A. P. Rostas
    • 2
  • Wing Nang Leung
    • 3
  1. 1.Biochemistry DepartmentMonash UniversityClaytonAustralia
  2. 2.Neuroscience Group, Faculty of MedicineUniversity of NewcastleAustralia
  3. 3.Biochemistry DepartmentChinese University of Hong KongShatin, N.THong Kong

Personalised recommendations