Integral Formulae in Complex Analysis

  • Ingo Lieb


This is a brief introduction to the use of integral representations for differential forms, with particular emphasis on the elementary aspects of the theory. The results and methods are due to many authors; the solution of Levi’s problem by the Kerzman-Stein formula was pointed out to me by M. Range.


Manifold Stein 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BOCHNER, S.: Analytic and meromorphic continuation by means of Green’s formula. Ann. Math. 44 (1943), 652–673.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    HARVEY, R./J. POLKING: Fundamental solutions in complex analysis I. Duke Math. J. 46 (1979), 253–300.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    HENKIN, G.M.: The Lewy equation and analysis on pseudoconvex manifolds. Usp. Mat. Nauk 32 (1977), 57–118.MathSciNetMATHGoogle Scholar
  4. [4]
    HORTMANN, M.: Über die Lösbarkeit der Gleichung mit Hilfe von LP-, Ck - und D’ stetigen Integraloperatoren. Math. Ann. 223 (1976), 139–156.MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    JAMBON, M.: L’équation différentielle de Cauchy-Riemann sur un domaine strictement pseudoconvexe. Solutions bornées, 18 (1972), 304–337.MathSciNetGoogle Scholar
  6. [6]
    KERZMAN, N./E. STEIN: The Szegö kernel in terms of Cauchy-Fantappié kernels. Duke Math. J. 45 (1978) 197–224.MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    KOPPELMAN, W.: The Cauchy integral for differential forms. Bull. Am. Math. Soc. 73 (1967), 554–556.MathSciNetMATHCrossRefGoogle Scholar
  8. [8]
    LIEB, I. Die Cauchy-Riemannschen Differentialgleichungen auf streng pseudokonvexen Gebieten. Math. Ann. 190 (1970), 6–44.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    LIEB, I./M. RANGE: On integral representations and a priori Lipschitz estimates for the canonical solution of a. To appear in Math. Ann.Google Scholar
  10. [10]
    RANGE, M.: An elementary integral solution operator for the Cauchy-Riemann equations on pseudoconvex domains in Cn. Trans. Am. Math. Soc. 274 (1982), 809–816.MathSciNetMATHGoogle Scholar

Copyright information

© Birkhäuser Boston, Inc. 1984

Authors and Affiliations

  • Ingo Lieb
    • 1
  1. 1.SFB 40 “Theoretische Mathematik”Mathematisches Institut der UniversitätBonn 1Germany

Personalised recommendations