Environmental transformations of DPA, SOPP, benomyl, and TBZ

  • Jasenka V. Zbozinek
Part of the Residue Reviews book series (RECT, volume 92)


Diphenylamine (DPA), sodium orthophenylphenate (SOPP), benomyl, and thiabendazole (TBZ) are frequently used to control the physical, chemical, and bacterial degradation of fruit during controlled-atmosphere storage. Once discharged to the environment, these chemicals may either be degraded or remain unaltered. Furthermore, the parent compounds and/or their metabolites may either remain at the initial point of release or be transported to other locations. In water, for example, chemicals may either stay in solution (in their original form and/or as derivatives), or they may be removed from solution by precipitation, by adsorption on suspended particles or bottom sediments, by uptake by biota, and/or by volatilization to the atmosphere.


Rumen Fluid Sclerotial Germination Humic Polymer Rebuttable Presumption Nitrosamine Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agriculture Canada: Guide to the chemical used in crop protection. Publication 1093 (1973).Google Scholar
  2. Aharonson, N., and A. Ben-Aziz: Determination of residues of benomyl, its hydrolysis product, and thiabendazole in various crops. J. Assoc. Official Anal. Chemists 56, 1330 (1973).Google Scholar
  3. ———, and U. Kafkafi: Adsorption of benzimidazole fungicides on montmorillonite and kaolinite clay surfaces. J. Agr. Food Chem. 23, 434 (1975 a).CrossRefGoogle Scholar
  4. ——— ———: Adsorption, mobility, and persistence of thiabendazole and methyl 2-benzimidazolecarbamate in soils. J. Agr. Food Chem. 23, 720 (1975 b).CrossRefGoogle Scholar
  5. ——— ———: The persistence in soil and availability to plant roots of benzimidazole systemic funigicides. Spec. Pub.—Agr. Res. Organ., Volcani Center (Bet Dagan, Israel) 82, 86 (1977).Google Scholar
  6. Ahmed, M., and D. D. Focht : Degradation of polychlorinated biphenyls by two species of Achromobacter. Can. J. Microbiol. 19, 47 (1973 a).Google Scholar
  7. ——— Oxidation of polychlorinated biphenyls by Achromobacter PCB [p- chlorobiphenyl]. Bull. Environ. Contam. Toxicol. 10, 70 (1973 b.PubMedCrossRefGoogle Scholar
  8. Alexander, M.: Biochemical ecology of microorganisms. Ann. Rev. Microbiol. 25, 361 (1971).CrossRefGoogle Scholar
  9. Alexander, W. E., A. J. Ryan, and S. E. Wright: Metabolism of diphenylamine in the rat, rabbit, and man. Food Cosmet. Toxicol. 3, 571 (1965).Google Scholar
  10. Ayanaba, A., and M. Alexander: Microbial formation of nitrosamines in vitro. Applied Microbiol. 25, 862(1973).Google Scholar
  11. Bartha, R. H., and D. Pramer: Pesticide transformation to aniline and azo compounds in soil. Science 156, 1617 (1967).PubMedCrossRefGoogle Scholar
  12. ———, A. B. Linke, and D. Pramer: Pesticide transformation: Production of chloroazobenzenes from chloroanilines. Science 161, 582 (1968).PubMedCrossRefGoogle Scholar
  13. Baude, F. J., J. A. Gardiner, and J. C. Y. Han: Characterization of residues on plants following foliar spray applications of benomyl. J. Agr. Food Chem. 21,1084 (1973).CrossRefGoogle Scholar
  14. ———, H. L. Pease, and R. F. Holt: Fate of benomyl on field soil and turf. J. Agr. Food Chem. 22, 413 (1974).CrossRefGoogle Scholar
  15. Buchenauer, H.: Studies on the stability of different systemic fungicides to action of UV and sunlight on glass and leaves of bean plants. In H. Lyr and C. Polter (eds.): System-fungiz. Internat. Symp., pp. 327–340 (1974).Google Scholar
  16. ———, L. V. Edgington, and F. Grossman: Photochemical transformation of thiophanate-methyl and thiophanate to alkyl benzimidazole-2-yl-carbamate. Pest. Sci. 4, 343 (1973).CrossRefGoogle Scholar
  17. Cain, R. B: Induction of ananthranilate oxidation system during the metabolism of ortho-nitrobenzoate by certain bacteria. J. Gen. Microbiol. 42, 197 (1966 a).PubMedGoogle Scholar
  18. ———:Utilization of anthranilic and nitrobenzoic acids by Nocardia opaca and a Flavobacterium. J. Gen. Microbiol. 42, 219 (1966 b).PubMedGoogle Scholar
  19. ———:Anthranilic acid metabolism by microorganisms. Formation of 5-hydroxyanthranilate as an intermediate in anthranilate metabolism by Nocardia opaca. Antonie van Leeuwenhoek 34, 417 (1968).CrossRefGoogle Scholar
  20. Carpenter, D. F., N. G. McCormick, J. H. Cornell, and A. M. Kaplan: Microbial transformation of 14C-labeled 2,4,6-trinitrotoluene in an activated-sludge system. Applied Environ. Microbiol. 35, 949 (1978).Google Scholar
  21. Catelani, D., A. Colombi, C. Sorlini, and V. Trecani: Metabolism of biphenyl. 2-Hydroxy-6-oxo-6-phenyl-2,4-hexadienoate. Metacleavage product from 2,3-dihydroxybiphenyl by Pseudomonas putida. Biochem. J. 134, 1063 (1973).PubMedGoogle Scholar
  22. Chambers, C. W., H. T. Tabak, and P. W. Kabler: Degradation of aromatic compounds by phenol-adapted bacteria. J. Water Pollut. Control Fed. 35, 1517 (1963).Google Scholar
  23. Chemley Products Company: Personal communication (1980)Google Scholar
  24. Chiba, M., and F. Doornbos: Instability of benomyl in various conditions. Bull. Environ. Contam. Toxicol. 11, 273 (1974).PubMedCrossRefGoogle Scholar
  25. Cimanowski, J., A. Masternak, and D. F. Millikan: Effectiveness of benomyl for controlling apple powdery mildew and cherry leaf spot in Poland. Plant Dis. Rep. 54, 81 (1970).Google Scholar
  26. Clark, R. R., E. S. K. Chian, and R.A. Griffin: Degradation of polychlorinated biphenyls by mixed microbial cultures. Applied Environ. Microbiol. 37, 680 (1979).Google Scholar
  27. Collins-Thompson, D. L., N. P. Sen, B. Aris, and L. Schwinghamer: Non-enzymatic in vitro formation of nitrosamines by bacteria isolated from meat products. Can. J. Microbiol. 18, 1968 (1972).PubMedCrossRefGoogle Scholar
  28. Couch, R. C, and H. W. Dorough: Comparative metabolism of selected fungicides. In G. W. Ivie and H. W. Dorough (eds.): Fate of pesticides in large animals, pp. 127–157. New York: Academic Press (1977).Google Scholar
  29. Cremlyn, R. J.: The mode of biochemical action of some well-known ftinigicides. In N. R. McFarlane (ed.): Herbicides and fungicides—Factors affecting their activity. Special Publication No. 29, pp. 22–34. London: Chemical Society (1977)Google Scholar
  30. Czanjik, M.: Studies of some wood preservatives in a field test in the Museum of Folk Architecture in Sanok (In Polish). Zesz. Probl. Postepow. Nauk. Roln. 209, 123 (1978).Google Scholar
  31. Czeslaw, L.: Biological treatment of sodium o-phenyl-phenoxide-containing effluents from pulp production (In Polish). Zesz. Probl. Postepow. Nauk. Roln. 209, 63 (1978).Google Scholar
  32. Dagley, S.: A biochemical approach to some problems of environmental pollution. Essays in Biochem. 11, 81 (1975).Google Scholar
  33. Doelle, H. W.: Bacterial metabolism, 2 ed. New York: Academic Press (1975).Google Scholar
  34. Douch, P. G. C.: The metabolism of benomyl fungicide in mammals. Xenobiotics 3, 367 (1973).CrossRefGoogle Scholar
  35. Environmental Protection Agency: Pesticide programs: Rebuttable presumption against registration and continued registration of pesticide products containing benomyl. Fed. Reg. 42 (234), 61788 (Dec. 6, 1977).Google Scholar
  36. Focht, D. D: Personal communication (March 18, 1980).Google Scholar
  37. ———: Personal communication (March 9, 1980).Google Scholar
  38. ———, and M. Alexander: Aerobic cometabolism of DDT analogues byHydrogenomonas sp. J. Agr. Food Chem. 19, 20 (1971).CrossRefGoogle Scholar
  39. ———, and W. Verstraete: Biochemical ecology of nitrification and denitrification. Adv. Microbiol. Ecol. 1, 135 (1977).Google Scholar
  40. Francis, A. J., R. J. Spanggord, G. I. Ouchi, R. Bramhall, and N. Bohonos: Metabolism of DDT analogues by a Pseudomonas sp. Applied Environ. Microbol. 32,213 (1976).Google Scholar
  41. ——— ——— ———anggord, G. I. Ouchi, and N. Bohonos: Cometabolism of DDT analogs by a Pseudomonas sp. Applied Environ. Microbiol. 35, 364 (1978).Google Scholar
  42. Frank, A.: Metabolism of 2-(2-furyl) benzimidazole in certain mammals. Acta Pharmacol. Toxicol., Suppl. 29 (1971).Google Scholar
  43. Fuchs, A., A. L. Homans, and F. W. DeVries: Systemic activity of benomyl [l-(butylcarbamoyl)-2-benzimidazolecarbamic acid methyl ester] against fusarium wilt of pea and tomato plants. Phytopathol. Z. 69, 630 (1970).CrossRefGoogle Scholar
  44. Furukawa, K., and F. Matsumura: Microbial metabolism of polychlorinated biphenyls: Studies on the relative degradability of polychlorinated biphenyl components by Alkaligenses sp. J. Agr. Food Chem. 24, 251 (1976).CrossRefGoogle Scholar
  45. ———, K. Tonomura, and A. Kamibayashi: Effect of chlorine substitution on the biodegradability of polychlorinated biphenyls. Applied Environ. Microbiol. 35, 223 (1978).Google Scholar
  46. Gardiner, J. A., R. K. Brantly, and H. Sherman: Isolation and identification of a metabolite of methyl l-butylcarbamoyl-2-benzimidazolecarbamate in rat urine. J. Agr. Food Chem. 16, 1050 (1968).CrossRefGoogle Scholar
  47. ———, J. J. Kirkland, H. L. Klopping, and H. Sherman: Fate of benomyl in animals. J. Agr. Food Chem. 22, 419 (1974).CrossRefGoogle Scholar
  48. Gershon, H., M. W. McNeil, R. Parmegiani, and P. K. Godfrey: Antifungal activity of substituted nitrobenzenes and anilines. Applied Microbiol. 22, 438 (1971).Google Scholar
  49. Gibson, D. T.: The microbial oxidation of aromatic hydrocarbons. Critical Rev. Microbiol. 1, 199(1971).CrossRefGoogle Scholar
  50. Griffin, R., R. R. Clark, M. Lee, and E. Chian: Disposal and removal of polychlorinated biphenyls in soil. In Land disposal of hazardous wastes; Proc. Fourth Ann. Res. Symp., San Antonio, Texas, 1978. EPA 600/19–78-016, pp. 169–181. Cincinnati: Municipal Environmental Research Laboratory (1978).Google Scholar
  51. Gutemann, W. H., and D. J. Lisk: A feedings study with diphenylamine in a dairy cow. Bull. Environ. Contam. Toxicol. 13, 177 (1975).CrossRefGoogle Scholar
  52. Halpaap, K., M. G. Horning, and E. C. Horning: Metabolism of biphenyl in the rat. J. Chromatogr. 166, 479 (1978).PubMedCrossRefGoogle Scholar
  53. Hammerschlag, R. S., and H. D. Sisler: Differential action of benomyl and methyl 2-benzimidazolecarbamate (MBC) in Saccharomyces pastorianus. Pest. Biochem. Physiol. 2, 123 (1972).CrossRefGoogle Scholar
  54. ——— ———: Benomyl and methyl-2-benzimidazolecarbamate (MBC). Biochemical, cytological, and chemical aspects of toxicity to Ustilago maydis and Saccharomyces cerevesiae. Pest. Biochem. Physiol. 3, 42 (1973).CrossRefGoogle Scholar
  55. Hawkesworth, G. M., and M. J. Hill: Bacteria and N-nitrosation of secondary amines. Brit. J. Cancer 25, 520(1971).CrossRefGoogle Scholar
  56. Hine, R. B., D. L. Johnson, and C. J. Wenger: The persistency of two benzimidazole fungicides in soil and their fungistatic activity againstPhymatotrichum omnivorum. Phytopathol. 59, 798 (1969).Google Scholar
  57. Hock, W. K., L. R. Schreiber, and B. R. Roberts: Factors influencing uptake, concentration, and persistence of benomyl in American elm seedlings. Phytopathol. 60, 1619 (1970).CrossRefGoogle Scholar
  58. Hockenbury, M. R., and C. P. L. Grady: Inhibition of nitrification—Effects of selected organic compounds. J. Water Pollut. Control Fed. 49, 768 (1977).Google Scholar
  59. Hofmann, K.: Imidazole and its derivatives. Part I, p. 247. New York Interscience (1953).Google Scholar
  60. Horvath, R. S.: Cometabolism of methyl-and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase. Biochem. J. 119, 871 (1970).PubMedGoogle Scholar
  61. ———: Microbial cometabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36, 146 (1972).PubMedGoogle Scholar
  62. Hurst, H. M., and N. A. Burges: Lignin and humic acids. In A. D. McLaren and G. H. Peterson (eds.): Soil biochemistry, pp. 260–286. New York: Marcel Dekker (1967).Google Scholar
  63. Ichihara, A., K. Adachi, K. Hosokawa, and Y. Takeda: The enzymatic hydroxylation of aromatic carboxylie acids: Substrate specificities of anthranilate and benzoate oxidases. J. Biol. Chem. 237, 2296 (1962).PubMedGoogle Scholar
  64. Idaka, E., T. Ogawa, H. Horitsu, and M. Tomoyeda: Degradation of azo compounds by Aeromonas hydrophila var. 24B. J. Soc. Dyers Colour. 94, 91 (1978).CrossRefGoogle Scholar
  65. Jacob, T. A., J. R. Carlin, R. W Walker, F. J. Wolf, and W. J. A. Vandenheuvel: Photolysis of thiabendazole. J. Agr. Food Chem. 23, 704 (1975).CrossRefGoogle Scholar
  66. Joel, A. R., and C. P. L. Grady: Inhibition of nitrification—Effects of aniline after biodégradation. J. Water Pollut. Control Fed. 49, 778 (1977).Google Scholar
  67. Kaufman, D. D., and P. C. Kearney: Microbial degradation of S-triazine herbicides. Residue Reviews 32, 235 (1970).PubMedGoogle Scholar
  68. Kesavan, R., E. Van Wambeke, and C. Van Assche: The effects of certain factors on the persistence of thiabendazole, 2-(4-thiazolyl)benzimidazole, in the soil environment. Meded. Fac. Landbouwwet., Rijksuniv. Gent. 41 (2, Pt. 2), 1413 (1976).Google Scholar
  69. Kilgore, W W, and E. R. White: Decomposition of the systemic fungicide 1991 (Benlate). Bull. Environ. Contam. Toxicol. 5, 67 (1970).CrossRefGoogle Scholar
  70. Kirk, R. E., and D. F. Othmer: Encyclopedia of chemical technology, 2 ed., Vol. 7, pp. 191–204. New York: Wiley (1964).Google Scholar
  71. Klubes, P., and W. R. Jondorf: Dimethylnitrosamine formation from sodium nitrite and dimethylamine by bacterial flora of rat intestine. Res. Commun. Chem. Pathol. Pharmacol. 2, 24 (1971).PubMedGoogle Scholar
  72. Kojima, Y., N. Itada, and O. Hayaishi: Metapyrocatechase: A new catechol-cleaving enzyme. J. Biol. Chem. 236, 2223 (1961).PubMedGoogle Scholar
  73. Kunisaki, N., H. Matsura, and M. Hayashi: Formation of N-nitrosodimethylamine by Escherichia coli (In Japanese). J. Food Hyg. Soc. Japan 17, 314 (1976).Google Scholar
  74. Lunt, D., and W. C. Evans: The microbial metabolism of biphenyl. Biochem. J. 118, 54 (1970).Google Scholar
  75. Martin, H. (ed.): Pesticide manual, 3 ed., p. 31. Worcester, England: British Crop Protection Council (1972).Google Scholar
  76. Martin, J. P., and D. D. Focht: Biological properties of soils. In L. F. Elliot and F. J. Stevenson (eds.): Soils for management of organic wastes and waste waters, pp. 114–169. Madison, Wisconsin: Soil Sci. Soc. Amer., Amer. Soc. Agron., Crop Sci. Soc. Amer. (1977).Google Scholar
  77. ———, and K. Haider: A comparison of the use of phenolase and peroxidase for the synthesis of model humic acid-type polymers. Presented ann. meeting Amer. Soc. Agron. Ft. Collins, CO, 5–10 Aug. 1979; through Agron. Abstr., p. 161 (1979).Google Scholar
  78. Martin, J. P., and K. Haider, and C. Saiz-Jimenez: Sodium amalgam reductive degradation of fungal and model phenolic polymers, soil humic acids and simple phenolic compounds. Soil Sci. Soc. Amer. Proc. 38, 760 (1974).Google Scholar
  79. McCormick, N. G., J. H. Cornell, and A. M. Kaplan: Identification of biotransformation products from 2,4-dinitrotoluene. Applied Environ. Microbiol. 35, 945 (1978).Google Scholar
  80. McCornack, A. A., and F. W. Hayward: Factors affecting decay control of Dowicide A-hexamine-treated citrus fruit. Proc. Fla. State Hort. Soc. 81, 290 (1968).Google Scholar
  81. McKenna, E. J., and. E. Kallio: The biology of hydrocarbons. Ann. Rev. Microbiol. 19, 1830 (1965).CrossRefGoogle Scholar
  82. McManus, E. C, F. V. Washko, and.D J. Tocco: Gastrointestinal absorption and secretion of thiabendazole in ruminants. J. Amer. Vet. Res. 27, 849 (1966).Google Scholar
  83. Miller, V. L., C. J. Gould, E. Csonka, and R. L. Jensen: Metal coordination compounds of thiabendazole. J. Agr. Food Chem. 21, 931 (1973).CrossRefGoogle Scholar
  84. Mills, A. L., and M. Alexander: N-nitrosamine formation by cultures of several microorganisms. Applied Environ. Microbiol. 31, 892 (1976).Google Scholar
  85. Neish, A. C.: Major pathways of biosynthesis. In J. B. Harborne (ed.): Biochemistry of phenolic compounds, pp. 295–360. New York: Academic Press (1964).Google Scholar
  86. Norwood, D. L., T. D. Johnson, and R. F. Christman: Reactions of chlorine with selected aromatic models of aquatic humic material. Environ. Sci. Technol. 14, 187 (1980).CrossRefGoogle Scholar
  87. Ogawa, J. M., E. Bose, B. T. Manji, E. R. White, and W. W. Kilgore: Biological activity of conversion products of benomyl. Presented ann. meeting Amer. Phytopathol. Soc.: Philadelphia, 15–19 Aug. 1971; through Phytopathol. 61, 905 (1971).Google Scholar
  88. Pauling, L.: The nature of the chemical bond, 3 ed. Ithaca, New York: Cornell University Press (1960).Google Scholar
  89. Peeples, J. L.: Microbial activity in benomyl-treated soils. Phytopathol. 64, 857 (1974).CrossRefGoogle Scholar
  90. Pellissier, M., N. L. La Casse, and H. Cole, Jr.: Effect of benomyl on the response to ozone in pinto beans. Phytopathol. 61, 131 (1971).Google Scholar
  91. Peterson, C. A., and L. V. Edgington: Quantitative estimation of the fungicide benomyl using a bioautograph technique. J. Agr. Food Chem. 17, 898 (1969).CrossRefGoogle Scholar
  92. Preston, P. N.: Synthesis, reactions, and spectroscopic properties of benzimidazoles. Chem. Rev. 74, 279 (1974).CrossRefGoogle Scholar
  93. Rao, P. S., and E. Hayon: Oxidation of aromatic amines and diamines by OH radicals. Formation and ionization constants of amine cation radicals in water. J. Phys. Chem. 79, 1063 (1975).CrossRefGoogle Scholar
  94. Rhodes, R. C., and J. D. Long: Run-off and mobility studies on benomyl in soils and turf. Bull. Environ. Contam. Toxicol. 12, 385 (1974).PubMedCrossRefGoogle Scholar
  95. Roberts, J. D., and M. C. Caserio: Basic principles of organic chemistry, p. 410. New York: W. A. Benjamin (1964).Google Scholar
  96. Rouchaud, J. P., J. R. DeCallonne, and J. A. Meyer: Metabolic fate of methyl 2-benzimidazole carbamate in melon plants. Phytopathol. 64, 1513 (1974).CrossRefGoogle Scholar
  97. Sander, J.: Nitrosaminsynthese durcakterien. Hoppe-Seyler’s Z. Physiol. Chem. 349, 429 (1968).CrossRefGoogle Scholar
  98. Schreiber, A., M. Hellwig, E. Dorn, W. Reineke, and H. J. Knackmuss: Critical reactions in fiuorobenzoic acid degradation by Pseudomonas sp. B13. Applied Environ. Microbiol. 39, 58 (1980).Google Scholar
  99. Schreiber, L. R., W. K. Hock, and B. R. Roberts: Influence of planting media and soil sterilization on the uptake of benomyl by American elm seedlings. Phytopathol. 61, 1512(1971).CrossRefGoogle Scholar
  100. Siegel, M. R., and A. J. Zabbia, Jr.: Distribution and metabolic fate of the fungicide benomyl in dwarf pea. Phytopathol. 62, 630 (1972).CrossRefGoogle Scholar
  101. Sprott, G. D., and C. T. Corke: Formation of 3,3′,4,4′ -tetrachloroazobenzene from 3,4-dichloroaniline. Can. J. Microbiol. 17, 235 (1971).PubMedCrossRefGoogle Scholar
  102. Thomson, R. H.: Structure and reactivity of phenolic compounds. In J.B. Harborne (ed.): Biochemistry of phenolic compounds, pp. 1–33. New York: Academic Press (1964)Google Scholar
  103. Tocco, D. J., R. P. Buhs, H. D. Brown, A. R. Matzuk, H. E. Mertel, R. E. Harman, and N. R. Trenner: The metabolic fate of thiabendazole in sheep. J. Med. Chem. 7, 399 (1964).PubMedCrossRefGoogle Scholar
  104. Tocco, D. J.,J. R. Egerton, W. Bowers, U. W. Christensen, and C. Rosenblum : Absorption, metabolism, and elimination of thiabendazole in farm animals and in estimation in biological materials. J. Pharmacol. Exp. Ther. 149, 263 (1965).PubMedGoogle Scholar
  105. Tocco, D. J., C. Rosenblum, C. M. Martin, and H. J. Robinson: Absorption, metabolism, and excretion of thiabendazole in man and laboratory animals. Toxicol. Applied Pharmacol. 9, 31 (1966).CrossRefGoogle Scholar
  106. Urushigawa, Y., and Y. Yonezawa: Chemico-biological interactions in biological purification systems II. Biodégradation of azo compounds by activated sludge. Bull. Environ. Contam. Toxicol. 17, 214 (1977).PubMedCrossRefGoogle Scholar
  107. Voets, J. P., H. Vanstaen, and W. Verstraete: Removal of nitrogen from highly nitrogenous wastewaters. J. Water Poll. Control Fed. 47, 394 (1975).Google Scholar
  108. Watkins, D. A. M.: Photolysis of methyl benzimidazole-2-yl-carbamate. Çhemosphere3, 239 (1974).CrossRefGoogle Scholar
  109. ———: Benzimidazole pesticides: Analysis and transformation. Pest. Sci. 7, 184 (1976).CrossRefGoogle Scholar
  110. Weissberger, A. (ed.): Heterocyclic compounds with three- and four-membered rings, Part I. New York: Interscience (1964).Google Scholar
  111. White, A., P. Handler, and E. L. Smith: Principles of biochemistry, 3 ed. New York: McGraw-Hill (1964).Google Scholar
  112. White, E. R., E. A. Bose, J. M. Ogawa, B. T. Manji, and W W. Kilgore: Thermal and base-catalyzed hydrolysis products of the systemic fungicide, benomyl. J. Agr. Food Ghem. 21,616 (1973).CrossRefGoogle Scholar
  113. Wiebkin, P., J. R. Fry, C. A. Jones, R. K. Lowing, and J. W. Bridges: Biphenyl metabolism in isolated rate hepatocytes. Effect of induction and nature of conjugates. Biochem. Pharmacol. 27, 1899 (1978).PubMedCrossRefGoogle Scholar
  114. World Health Organization: Evaluation of some pesticide residues in food. WHO Pesticide Residues Series No. 3, p. 33. Geneva, Switzerland (1974).Google Scholar
  115. Wright, J. B.: The chemistry of benzimidazoles. Chem. Rev. 48, 397 (1951).CrossRefGoogle Scholar
  116. Wright, K. A., and R. B. Cain: Microbial metabolism of pyridinium compounds. Metabolism of 4-carboxy-l-methyl-pyridinium chloride, a photolytic product of paraquat. Biochem. J. 128, 543 (1976).Google Scholar
  117. Zaronsky, C, Jr., and R. T. Stipes: Some effects on growth and translocation of thiabendazole and methyl l-(butylcarbamoyl)-2-benzimidazolecarbamate applied to Ulmus Americana seedlings. Phytopathol. 59, 1562 (1969).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • Jasenka V. Zbozinek
    • 1
  1. 1.SCS Engineers, Inc.Long BeachUSA

Personalised recommendations