Convergence in Distribution in Euclidean Spaces

  • David Pollard
Part of the Springer Series in Statistics book series (SSS)

Abstract

Convergence is distribution of a sequence X n of real random variable is traditionally defined to mean convergence of distribution functions at each continuity point of the limit distribution function:
$$\mathbb{P}\{ X_n \leqslant x\} \to \mathbb{P}\{ X \leqslant x\} \,\text{whenever}\,\mathbb{P}\{ X = x\} = 0$$
.

Keywords

Convolution Arsin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York Inc. 1984

Authors and Affiliations

  • David Pollard
    • 1
  1. 1.Department of StatisticsYale UniversityNew HavenUSA

Personalised recommendations