Skip to main content

Cone Pathways in the Mammalian Retina

  • Conference paper
  • 76 Accesses

Part of the book series: Cell and Developmental Biology of the Eye ((EYE))

Abstract

The basic neurocircuitry underlying the highest visual acuity pathways in such animals as birds, primates and certain reptiles (Cajal, 1933) is thought to consist of a bipolar cell/ganglion cell chain connected in a one to one fashion with a single cone photoreceptor. In the monkey retina, for example, there are midget bipolar cells and midget ganglion cells that subserve an individual cone (Polyak, 1941), In 1969 it was reported that the cone midget bipolar pathways of the rhesus monkey retina consisted of a pair of bipolars characterized by different types of synaptic contact with the cone pedicles in the outer plexiform layer (OPL) (Kolb et al., 1969). One of the midget bipolars inserted dendritic terminals into the synaptic complex of the cone pedicle to make “invaginating” contacts beneath the synaptic ribbon (Figures 1,2). The other midget bipolar, in contrast, made synaptic contacts with the surface of the cone pedicle on either side of the invaginating elements (Figures 1,3). In addition the two midget bipolar types were found to have different termination levels of their axons in the inner plexiform layer (IPL).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R.A. (1969). The retinal bipolar cells and their synapses in the inner plexiform layer. In The retina: morphology, function and clinical characteristics. (eds. Straatsma, B.R., Hall, M.O., Allen, R.A. and Crescitelli, F.) pp. 101–143. Forum in Medical Sciences. No. 8 Berkeley: University of California Press.

    Google Scholar 

  • Boycott, B.B. and Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Phil. Trans. R. Soc. (Lond), B, 255: 109 – 184.

    Article  Google Scholar 

  • Boycott, B.B. and Kolb, H. (1973). The connections between the bipolar cells and photoreceptors in the retina of the domestic cat. J. Comp. Neur., 148: 91 – 114.

    Article  PubMed  CAS  Google Scholar 

  • Boycott, B.B. and Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol. (Lond), 240: 397 – 419.

    CAS  Google Scholar 

  • Cajal, S.R. (1933). Die Retina der Wirbeltiere. Wiesbaden: Bergmann; Trans. Thorpe, S.A. and Glickstein, M. (1972). The Structure of the Retina. Thomas, Springfield.

    Google Scholar 

  • Cleland, B.G. and Levick, W.R. (1974a). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J. Physiol. (Lond.), 240: 421 – 456.

    CAS  Google Scholar 

  • Dowling, J.E. (1970). Organization of vertebrate retinas. Invest. Ophthal., 9: 655 – 680.

    PubMed  CAS  Google Scholar 

  • Dowling, J.E. and Werblin, F.S. (1969). Organization of the retina of the mudpuppy, Necturus maculosus. I. Synaptic structure, J. Neurophysiol., 32: 315 – 338.

    CAS  Google Scholar 

  • Enroth-Cugell, C. and Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.), 187: 517 – 552.

    CAS  Google Scholar 

  • Famiglietti, E.V. and Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Res. 84: 293 – 300.

    Article  PubMed  Google Scholar 

  • Famiglietti, E.V. and Kolb, H. (1976). Structural basis for ‘ON’ and ‘OFF’-center responses in retinal ganglion cells. Science 194: 193 – 195.

    Article  PubMed  Google Scholar 

  • Fukuda, Y. and Stone, J. (1974). Retinal distribution and central projections of Y-, X-, and W-cells of the cat’s retina. J. Neurophysiol., 37: 749 – 772.

    PubMed  CAS  Google Scholar 

  • Gouras, P. (1971). The function of the midget cell system in primate color vision. Vision Res. Suppl., 3: 397 – 410.

    Article  Google Scholar 

  • Ikeda, H. and Wright, M.J. (1972). Differential effects on refractive errors and receptive field organization of central and peripheral ganglion cells. Vision Res., 12: 1465 – 1476.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, H. and Sheardown, M. (1983). Functional transmitters at retinal ganglion cells in the cat. Vision Res., 23: 1161 – 1174.

    Article  PubMed  CAS  Google Scholar 

  • Kaneko, A. (1970). Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. J. Physiol. (Lond), 207: 623 – 633.

    CAS  Google Scholar 

  • Kolb, H., Boycott, B.B. and Dowling, J.E. (1969). A second type of midget bipolar cell in the primate retina. Appendix. Phil Trans. R. Soc. (Lond.), B. 255: 177 – 184.

    Google Scholar 

  • Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. Phil. Trans. R. Soc. (Lond.), B, 258: 261 – 283.

    Article  Google Scholar 

  • Kolb, H. and Famiglietti, E.V. (1974). Rod and cone bipolar connections in the inner plexiform layer of the cat retina. Science 186: 47 – 49.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron microscope observations. J. Neurocytol., 8: 295 – 329.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. and Nelson, R. (1981). Three amacrine cells of the cat retina: morphology and intracellular responses. ARVO. Invest. Ophthal. Vis. Sci., Suppl., 20: p. 184.

    Google Scholar 

  • Kolb, H., Nelson, R. and Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: a Golgi study. Vision Res., 21: 1081 – 1114.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H. and Nelson, R. (1983). Rod pathways in the retina of the cat. Vision Res., 23: 301 – 312.

    Article  PubMed  CAS  Google Scholar 

  • Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. J. Neurophysiol., 16: 47 – 68.

    Google Scholar 

  • Lasansky, A. (1978). Contacts between receptors and electrophysiologically identified neurones in the retina of the larval Tiger Salamander. J. Physiol. (Lond), 285: 531 – 542.

    CAS  Google Scholar 

  • Leventhal, A.G., Keens, J. and Törk, I. (1980). The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat’s ‘Pulvinar complex’. J. Comp. Neur., 194: 535 – 554.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A.G., Rodieck, R.W. and Dreher, B. (1981). Retinal ganglion cell classes in old world monkeys: morphology and central projections. Science 213: 1139 – 1142.

    Article  PubMed  CAS  Google Scholar 

  • Leventhal, A.G. (1982). Morphology and distribution of retinal ganglion cells projecting to different layers of the dorsal lateral geniculate nucleus in normal and siamese cats. J. Neurosci., 2: 1024 – 1042.

    PubMed  CAS  Google Scholar 

  • Maguire, B.A., Stevens, J.K. and Sterling, P. (1982). “Push-pull” microcircuitry of the beta (X) ganglion cell in light adaptation. ARVO. Invest. Ophthal. Vis. Sci., Suppl. 22, p. 82.

    Google Scholar 

  • Marchiafava, P.L. and Weiler, R. (1980). Intracellular analysis and structural correlates of the organization of inputs to ganglion cells in the retina of the turtle. Proc. R. Soc. (Lond.) B, 208: 103 – 113.

    Article  CAS  Google Scholar 

  • Mariani, A.P. (1981). A diffuse, invaginating cone bipolar cell in primate retina. J. Comp. Neur. 197: 661 – 671.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, A.P. (1982). Newly identified bipolar cells in monkey retina. ARVO. Invest. Ophthal. Vis. Sci. Suppl. 22, p. 247.

    Google Scholar 

  • Marr, D. (1974). The computation of lightness by the primate retina. Vision Res. 14: 1377 – 1388.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.F. (1980). The neuronal basis of ganglion-cell receptivefield organization and the physiology of amacrine cells. In Neuronal Interactions in the Vertebrate Retina. Neurosciences fourth study program, 1979 (Eds. Schmitt, F.O. and Worden, F.G.) MIT Press, Cambridge, MA and London, England.

    Google Scholar 

  • Miller, R.F. and Dacheux, R.F. (1976). Synaptic organization and ionic basis on On and Off channels in mudpuppy retina. I. Intracellular analysis of chloride-sensitive electrogenic properties of receptors, horizontal cells, bipolar cells and amacrine cells. J. Gen. Physiol. 67: 639 – 659.

    Article  PubMed  CAS  Google Scholar 

  • Naka, K-I. (1976). Neuronal circuitry in the cat fish retina. Invest. Ophthal., 15: 926 – 935.

    Google Scholar 

  • Nelson, R. (1977). Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. J. Comp. Neur., 172: 109 – 135.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. (1980). Functional stratification of cone bipolar axons in the cat retina. ARVO. Invest. Ophthal. Vis. Sci., Suppl., p. 130.

    Google Scholar 

  • Nelson, R. (1982). All amacrine cells quicken time course of rod signals in the cat retina. J. Neurophysiol. 47: 928 – 947.

    PubMed  CAS  Google Scholar 

  • Nelson, R., Famiglietti, E.V. and Kolb, H. (1978). Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina. J. Neurophysiol., 41: 472 – 483.

    PubMed  CAS  Google Scholar 

  • Nelson, R., Kolb, H., Famiglietti, E.V. and Gouras, P. (1976). Neural responses in rod and cone systems of the cat retina: Intracellular staining reveals different levels of stratification for on-center and off-center ganglion cells in the cat retina. J. Neurophysiol. 41: 472 – 483.

    Google Scholar 

  • Nelson, R., Kolb, H., Robinson, M.M. and Mariani, A.P. (1981). Neural activity of the cat retina: cone pathways to ganglion cells. Vision Res. 21: 1527 – 1536.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R. and Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Res., 23: 1183 – 1195.

    Article  PubMed  CAS  Google Scholar 

  • Ogden, T.E. (1974). The morphology of retinal neurons of the owl monkey, Aotes. J. Comp. Neur., 153: 399 – 428.

    Article  CAS  Google Scholar 

  • Polyak, S.L. (1941). The Retina. Univ. of Chicago Press.

    Google Scholar 

  • Raviola, E. and Raviola, G. (1982). Structure of the synaptic membranes in the inner plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits. J. Comp. Neur., 209: 233 – 248.

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, R.H., Reid, M. and Lacey, P.L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). J. Comp. Neur., 148: 229 – 248.

    Article  PubMed  CAS  Google Scholar 

  • Sterling, P. (1983). Microcircuitry of the cat retina. Ann. Rev. in Neurosci., 6: 149 – 183.

    Google Scholar 

  • Stevens, J.K., McGuire, B.A. and Sterling, P. (1980). Toward a functional architecture of the retina: serial reconstruction of adjacent ganglion eels. Science 207: 317 – 319.

    Article  PubMed  CAS  Google Scholar 

  • Stone, J. (1965). A quantitative analysis of the distribution of ganglion cells in the cat’s retina: J. Comp. Neur. 124: 337 – 352.

    Article  PubMed  CAS  Google Scholar 

  • Stone, LJ. and Hoffmann, K.P. (1972). Very slow-conduction ganglion cells in the cat’s retina: a major new functional type? Brain Res., 43: 610 – 616.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, J-I. and Kujiraoka, T. (1982). Analysis of bipolar cell respones elicited by polarization of horizontal cells. J. Gen. Physiol. 79: 131 – 145.

    Article  PubMed  CAS  Google Scholar 

  • Toyoda, J-I. and Fugimoto, M. (1983). Analyses of neural mechanisms mediating the effect of horizontal cells polarization. Vision Res., 23: 1143 – 1150.

    Article  PubMed  CAS  Google Scholar 

  • Wässle, H., Peichl, L. and Boycott, B.B. (1981a). Morphology and topography of on- and off- alpha cells in the cat retina. Proc. R. Soc. (Lond.), B, 212: 157 – 175.

    Article  Google Scholar 

  • Wässle, H., Boycott, B.B. and Illing, R.-B. (1981b). Morphology and mosaic of on- and off- beta cells in the cat retina and some functional considerations. Proc. R. Soc. (Lond.), B, 212: 177 – 195.

    Article  Google Scholar 

  • Werblin, F.S. and Dowling, J.E. (1969). Organization of the retina of the mdpuppy, Necturus maculosus. II. Intracellular recording. J. Neurophysiol., 32: 339 – 355.

    PubMed  CAS  Google Scholar 

  • Yazulla, S. (1976). Cone input to bipolar cells in the turtle retina. Vision Res., 16: 737 – 744.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag New York Inc.

About this paper

Cite this paper

Kolb, H. (1984). Cone Pathways in the Mammalian Retina. In: Hilfer, S.R., Sheffield, J.B. (eds) Molecular and Cellular Basis of Visual Acuity. Cell and Developmental Biology of the Eye. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5236-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5236-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9751-2

  • Online ISBN: 978-1-4612-5236-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics