Advertisement

Monoclonal Antibody Mediated Drug Delivery and Antibody Toxin Conjugates

  • David M. NevilleJr.
Part of the Experimental Biology and Medicine book series (EBAM, volume 7)

Abstract

Monoclonal antibody mediated drug delivery systems are relatively new to pharmacology. Early development of monoclonal antibodies and their interaction with unique cell surface determinants was confined largely to immunology groups (Mason and Williams, 1980). As clinical applications appear practical these systems are likely to come increasingly under the purview of pharmacologists. The point of view of this paper is that the questions and tools that are unique to pharmacology will be necessary for the practical development of antibody mediated drug delivery systems.

Keywords

Amyotrophic Lateral Sclerosis Thyroid Gland Diphtheria Toxin Placental Lactogen Thyroid Stimulate Hormone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon, R. and Sela, M., In vitro and in vivo efficacy of conjugates of daunomycin with anti-tumor antibodies. Immunol. Rev., 62 (1982) 5–27.PubMedCrossRefGoogle Scholar
  2. Bernstein, I. D., Tam, M. R., and Nowinski, R. C., Mouse leukemia: Therapy with monoclonal antibodies against a thymus differentiation antigen. Science, 207 (1980) 68–71.PubMedCrossRefGoogle Scholar
  3. Blythman, H. E., Casellas, P., Gros, O., Gros, P., Jansen, F. K., Paolucci, F., Pau, B., and Vidal, H., Immunotoxins: Hybrid molecules of monoclonal antibodies and a toxin subunit specifically kill tumour cells. Nature, 290 (1981) 145–146.PubMedCrossRefGoogle Scholar
  4. Casellas, P., Bourrie, B. J. P., Gros, P., and Jansen, F. K., Kinetics of cytotoxicity induced by immunotoxins. J. Biol. Chem., 259 (1984) 9359–9364.PubMedGoogle Scholar
  5. Cawley, D. B., Hershman, H. R., Gilliland, D. G., and Collier, R. J., Epidermal growth factor-toxin A chain conjugates: EGF-ricin A is a potent toxin while EGFdiphtheria fragment A is nontoxic. Cell, 22 (1980) 563–570.PubMedCrossRefGoogle Scholar
  6. Chang, T. M., Dazord, A., and Neville, D. M., Jr., Artificial hybrid protein containing a toxic protein fragment and a cell membrane receptor-binding moiety in a disulfide conjugate. II. Biochemical and biological properties of diphtheria toxin fragment A-S-S-human placental lactogen. J. Biol. Chem., 252 (1977) 1515–1522.PubMedGoogle Scholar
  7. Esworthy, R. S. and Neville, D. M., Jr., A comparative study of ricin and diphtheria toxin-antibody-conjugate kinetics of protein synthesis inactivation. J. Biol. Chem., 259 (1984) 11496–11504.PubMedGoogle Scholar
  8. Filipovich, A. H., Vallera, D. A., Youle, R. J., Quinonas, R. R., Neville, D. M., Jr., and Kersey, J. H., Ex-vivo treatment of donor bone marrow with anti-T cell immunotoxins for the prevention of graft-versus-host disease. The Lancet (1984a) 469–472.Google Scholar
  9. Filipovich, A. H., Vallera, D. A., Youle, R. J., Neville, D. M., Jr., and Kersey, J. H., Ex vivo T cell depletion with immunotoxins in allogeneic bone marrow transplantation: The pilot clinical study for prevention of graft-versus-host disease. Transplantation proc., (1984b) (in press).Google Scholar
  10. Galfre, G. and Milstein, C., Preparation of monoclonal antibodies: Strategies and procedures. Meth. Enz., 73 (1981) 1–46.Google Scholar
  11. Glennie, M. J. and Stevenson, G. T., Univalent antibodies kill tumor cells in vitro and in vivo. Nature, 295 (1982) 712–714.PubMedCrossRefGoogle Scholar
  12. Gurney, M. E., Belton, A. C., Cashman, N., and Antel, J. P., Inhibition of terminal axonal sprouting by serum from patients with amyotrophic lateral sclerosis. New Eng. J. Med., 311 (1984) 933–939.PubMedCrossRefGoogle Scholar
  13. Haskell, C. M., Buchegger, F., Schreyer, M., Carrel, S., and Mach, J.-P., In vitro screening of new monoclonal anti-carcinoembryonic antigen antibodies for radio-imaging human colorectal carcinomas. In Boss, B. D., Langman, R., Trowbridge, I., and Dulbecco, R. (Eds) Monoclonal Antibodies and Cancer, Academic Press, 1983, pp. 275–283.Google Scholar
  14. Houston, L. L., Nowinski, R. C., and Bernstein, I. D., Specific in vivo localization of monoclonal antibodies directed against the Thy 1.1 antigen. J. Immunol. 125 (1980) 837–843.PubMedGoogle Scholar
  15. Houston, L. L., Nowinski, R. C., and Bernstein, I. D., Specific in vivo localization of monoclonal antibodies directed against the Thy 1.1 antigen. J. Immunol. 125 (1980) 837–843.PubMedGoogle Scholar
  16. Koprowski, H., Mouse monoclonal antibodies in vivo. In Boss, B. D., Langman, R., Trowbridge, I., and Dulbecco, R. (Eds) Monoclonal Antibodies and Cancer, Academic Press, 1983, pp. 17–38.Google Scholar
  17. Korngold, R. and Sprent, J., Lethal GVHD across minor histocompatibility barriers: Nature of the effector cells and role of the H-2 complex, Immunol. Rev. 71 (1983) 5–29.PubMedCrossRefGoogle Scholar
  18. Levy, R., Miller, R. A., Stratte, P. T., Maloney, D. G., Link, M. P., Meeker, T. C., Oseroff, A., Thielemans, K., and Warnke, R., Therapeutic trials of monoclonal antibody in leukemia and lymphoma: Biologic considerations. In Boss, B. D., Langman, R., Trowbridge, I., and Dulbecco, R. (Eds) Monoclonal Antibodies and Cancer, Academic Press, 1983, pp. 5–16.Google Scholar
  19. Mach, J. P., Chatal, J. F., Lumbroso, J. D., Buchegger, F., Forni, M., Ritschard, J., Berche, C., Douillard, J. Y., Carrel, S., and Herlyn, M., Tumor localization in patients by radiolabeled monoclonal antibodies against colon carcinoma. Cancer Res., 43 (1983) 5593–5600.PubMedGoogle Scholar
  20. Mason, D. W. and Williams, A. F., The kinetics of antibody binding to membrane antigens in solution and at the cell surface. Biochem. J., 187 (1980) 1–20.PubMedGoogle Scholar
  21. Neville, D. M., Jr. and Youle, R. J., Monoclonal antibody-ricin or ricin A chain hybrids. Kinetic analysis of cell killing for tumor therapy. Immunol. Rev., 62 (1982a) 75–91.CrossRefGoogle Scholar
  22. Neville, D. M., Jr. and Youle, R. J., Monoclonal antibody-ricin hybrids as a treatment of animal graft-versushost disease. U. S. Patent 4,440,747. (Related U. S. patents pending SN 399,257, SN 456, 401 ) (1982b)Google Scholar
  23. Neville, D. M., Jr., and Youle, R. J., Anti-Thy 1.2 monoclonal antibody hybrid utilized as a tumor suppressant. U.S. Patent 4,359, 457 (1980)Google Scholar
  24. Nisonoff, A. and Rivers, M. M., Recombination of a mixture of univalent antibody fragments of different specificity. Arch. Biochem. Biophys., 93 (1961) 460–467.PubMedCrossRefGoogle Scholar
  25. Pappenheimer, A. M., Jr., Diphtheria toxin. Ann. Rev. Biochem., 46 (1977) 69–94.PubMedCrossRefGoogle Scholar
  26. Roitt, I., Essential Immunology, 4th Ed., Blackwell Scientific Publications, Oxford, 1980.Google Scholar
  27. Storb, R. and Thomas, E. D., Allogeneic bone-marrow transplantation. Immunol. Rev. 71 (1983) 77–102.PubMedCrossRefGoogle Scholar
  28. Trowbridge, I. S., Lesley, J., and Schulte, R., Murine cell surface transferrin receptor: Studies with an anti-receptor monoclonal antibody. J. Cell Physiol., 112 (1982) 403–410.PubMedCrossRefGoogle Scholar
  29. Vallera, D. A., Ash, R. C., Zanjani, E. D., Kersey, J. H., LeBien, T. W., Beverly, P. C. L., Neville, D. M., Jr., and Youle, R. J., Anti-T-cell reagents for human bone marrow transplantation: Ricin linked to three monoclonal antibodies. Science, 222 (1983) 512–515.PubMedCrossRefGoogle Scholar
  30. Vallera, D. A., Soderling, C. C., Carlson, G. J., and Kersey, J. H., Bone marrow transplantation across major histocompatibility barriers in mice. H. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients. Transplantation 33 (1982) 243–248.PubMedCrossRefGoogle Scholar
  31. Von Melchner, H. and Bartlett, P. F., Mechanisms of early allogeneic marrow graft rejection, Immunol. Rev. 71 (1983) 31–56.Google Scholar
  32. Wellman, H. N. and Anger, R. T., Jr., Radioiodine dosimetry and the use of radioiodines other than 1311 in thyroid diagnosis. Sem. in Nuc. Med., 1 (1971) 356–378.Google Scholar
  33. Williams, A. F. and Gagnon, J., Neuronal cell Thy-1 glycoproteins and homology with immunoglobulin. Science, 216 (1982) 696–703.PubMedCrossRefGoogle Scholar
  34. Youle, R. J., Murray, G. J., and Neville, D. M., Jr., Studies on the galactose-binding site of ricin and the hybrid toxin Man6P-ricin. Cell, 23 (1981) 551–559.PubMedCrossRefGoogle Scholar
  35. Youle, R. J., Murray, G. J., and Neville, D. M., Jr., Ricin linked to phosphomannan binds to fibroblast lysosomal hydrolase receptors resulting in a cell type specific toxin. Proc. Natl. Acad. Sci. USA, 76 (1979) 5559–5562.PubMedCrossRefGoogle Scholar
  36. Youle, R. J. and Neville, D. M., Jr., Kinetic of protein synthesis inactivation by ricin-anti Thy 1.1 monoclonal antibody hybrids: Role of the ricin B subunit demonstrated by reconstitution. J. Biol. Chem., 257 (1982) 1598–1601.PubMedGoogle Scholar
  37. Youle, R. J. and Neville, D. M., Jr., Anti-Thy 1.2 monoclonal antibody linked to ricin is a potent cell-typespecific toxin. Proc. Natl. Acad. Sci. USA, 77 (1980) 5483–5486.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • David M. NevilleJr.
    • 1
  1. 1.Section on Biophysical Chemistry, Laboratory of Molecular BiologyNational Institute of Mental HealthBethesdaUSA

Personalised recommendations