The Responsibility of High Temperature Scientists

  • Leo Brewer

Abstract

When I was first introduced to high temperature research on joining the Manhattan Project in January 1943, I was surprised by the novelty and unexpected complexity of high temperature systems. At room temperature, one expects a mixture of aluminum metal with an aluminum halide or aluminum oxide to be restricted to the zero and 3+ oxidation states. The predictions of chemical behavior upon heating, based on room temperature behavior, are grossly in error because of neglect of the additional oxidation states that become increasingly important as the temperature is increased. In high temperature aluminum—oxygen systems, for example, the trivalent gaseous species has not even been reported, but Al2O, AlO, Al2O2, and AlO2 gases have been established. For gaseous systems in equilibrium with condensed phases, one can demonstrate that the gaseous phase will become more and more complicated as the temperature is increased both with respect to the number of species and with respect to the complexity of the molecules.

Keywords

Enthalpy Al2O Uranium Iodide Molybdenum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rosenblatt, G. M., Chairman, High Temperature Science, Future Needs and Anticipated Developments, NRC Committee on High Temperature Science and Technology, National Academy of Sciences, Washington, DC, 1979.Google Scholar
  2. 2.
    Stockmayer, W. H., Chairman, National Needs for Critically Evaluated Physical and Chemical Data. NRC Committee on Data Needs (CODAN), National Academy of Sciences, Washington, 1978.Google Scholar
  3. 3.
    Brewer, L., and Lamoreaux, R. H., Thermochemical Properties, Atomic Energy Review Special Issue No. 7, Molybdenum: Physico-chemical Properties of Its Compounds and Alloys, International Atomic Energy Agency, Vienna, 1980, pp. 74–77.Google Scholar
  4. 4.
    Moore, C. E., Atomic Energy Levels, Vol. I (1949), Vol. II (1952), Vol. III (1958), NBS Circular 467, Supt. of Documents, US Govt. Printing Office, Washington, DC.Google Scholar
  5. 5.
    Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K., and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements, Am. Soc. for Metals, Metals Park, OH, 1973.Google Scholar
  6. 6.
    JANAF Thermochemical Tables,second ed., NSRDS-NBS-37, US Govt. Printing Office, Washington, DC, 1971, and supplements in J. Phys. Chem. Ref. Data 3, 311 (1974); 4, 1 (1975); 7, 793 (1978); 11, 695 (1982).Google Scholar
  7. 7.
    Glushko, V. P., Gurvich, L. V., Bergman, G. A., Veitz, I. V., Medvedev, V. A., Khachkuruzov, G. A., and Yungman, V. S., Thermodynamic Properties of Individual Substances, High-Temperature Institute, State Institute of Applied Chemistry, National Academy of Sciences of the U.S.S.R., Moscow, Vol. I: compounds of O, H, F, Cl, Br, I, He, Ne, Ar, Kr, Rn, S, N, and P (1978); Vol. II: C, Si, Ge, Sn, Pb (1979); Vol. III: B, Al, Ga, In, TI, Be, Mg, Ca, Sr, Ba (1981); Vol. IV: Cr, Mo, W, V, Nb, Ta, Ti, Zr, Hf, Sc, Y, La, Th, U, Pu, Li, Na, K, Rh, Cs (1982).Google Scholar
  8. 8.
    Brewer, L., J. Opt. Soc. Am. 61, 1101 (1971).CrossRefGoogle Scholar
  9. 9.
    Brewer, L., J. Opt. Soc. Am. 61, 1666–81 (1971).CrossRefGoogle Scholar
  10. 10.
    Racah, G., Cours au College de France,Paris, 1964, as reported in ref. (11) (see below).Google Scholar
  11. 11.
    Camus, P., J. Phys. (France) 27, 717 (1966).CrossRefGoogle Scholar
  12. 12.
    Fred, M., Advan. Chem. Ser. 71, 180 (1967).CrossRefGoogle Scholar
  13. 13.
    Nir, S., J. Opt. Soc. Am. 60, 354 (1970).CrossRefGoogle Scholar
  14. 14.
    Nugent, L. H., and Vander Sluis, K. L., J. Opt. Soc. Am. 61, 1112 (1971).CrossRefGoogle Scholar
  15. 15.
    Pitzer, K. S., and Brewer, L., 2nd Ed. of Lewis, G. N., and Randall, M., Thermodynamics, McGraw-Hill, New York, 1961.Google Scholar
  16. 16.
    Cohen, E. R., and Taylor, B. N., J. Phys. Chem. Ref. Data 2, 663 (1973).CrossRefGoogle Scholar
  17. 17.
    Colclough, A. R., Quinn, T. J., and Chandler, R. D. R., Proc. Roy. Soc. London Ser. A 368, 125 (1979).CrossRefGoogle Scholar
  18. 18.
    Holden, N. E., Pure Appl. Chem. 52, 2349 (1980).CrossRefGoogle Scholar
  19. 19.
    Lederer, C. M., Shirley, V. S., Browne, E., Dairike, J. M., and Doebler, R. E., Tables of Isotopes,7th Ed., Wiley, New York, 1978. and Jan. 1982 preprint of Atomic Mass Tables for Nuclides by A. H. Wapstra, G. Audi, and K. Bos.Google Scholar
  20. 20.
    Crosswhite, H., and Fred, M. S., private communication, 6/30/83.Google Scholar
  21. 21.
    Goodman, L. S., Diamond, H., Stanton, H. E., and Fred, M. S., Phys. Rev. A4, 473 (1971).Google Scholar
  22. 22.
    Worden, E. F., Lougheed, R. W., Gutmacher, R. G., and Conway, J. G., J. Opt. Soc. Am. 64, 77 (1974).CrossRefGoogle Scholar
  23. 23.
    Blaise, J., Wyart, J.-F., Conway, J. G., and Worden, E. F., Phys. Scripta 22, 224 (1980).CrossRefGoogle Scholar
  24. 24.
    Conway, J. G., Worden, E. F., Blaise, J., Camus, P., and Vergès, J., Spectrochim. Acta 32B, 101 (1977).Google Scholar
  25. 25.
    Worden, E. F., and Conway, J. G., At. Data Nucl. Data Tables 22, 329 (1978).CrossRefGoogle Scholar
  26. 26.
    Worden, E. F., and Conway, J. G., J. Opt. Soc. Am. 66, 109 (1976).CrossRefGoogle Scholar
  27. 27.
    Fred, M., and Tomkins, F. S., J. Opt. Soc. Am. 47, 1076 (1957).CrossRefGoogle Scholar
  28. 28.
    Pulliam, B., private communication.Google Scholar
  29. 29.
    Fred, M., Tomkins, F. S., Blaise, J. E., Camus, P., and Vergès, J., J. Opt. Soc. Am. 67, 7 (1977).CrossRefGoogle Scholar
  30. 30.
    Blaise, J., and Radzimski, L., J. Opt. Soc. Am. 66, 644 (1976).CrossRefGoogle Scholar
  31. 31.
    Crosswhite, H., Gmelin Handbook No. 55, Uranium, Supplement Volume A5, Spectra, Springer-Verlag, New York, 1982.Google Scholar
  32. 32.
    Ward, J. W., J. Less-Common Metals 93, 279 (1983).CrossRefGoogle Scholar
  33. 33.
    Ward, J. W., Kleinschmidt, P. D., Haire, R. G., and Brown, D., ACS Symposium Series 131, Edelstein, N. M., (1980), pp. 199–220.Google Scholar
  34. 34.
    Ward, J. W., and Kleinschmidt, P. D., J. Chem. Phys. 77, 1464 (1982).CrossRefGoogle Scholar
  35. 35.
    Ooetting, F. L., Rand, M. H., and Ackerman, R. J., The Chemical Thermodynamics of Actinides Elements and Compounds. Part 1. The Actinides Elements, International Atomic Energy Agency, Vienna, 1976.Google Scholar
  36. 36.
    Zalubas, R., J. Opt. Soc. Am. 58, 1195 (1968).CrossRefGoogle Scholar
  37. 37.
    Giacchetti, A., and Blaise, J., European Group for Atomic Spectroscopy, Paper 57, 1970.Google Scholar
  38. 38.
    Zalubas, R., J. Res. NBS 80A, 221 (1976).Google Scholar
  39. 39.
    Hilsenrath, J., Messina, C. G., and Evans, W. H., Air Force Weapons Laboratory Report AFWL TDR-64–44, Tables of Ideal Gas Thermodynamic Functions, 1964.Google Scholar
  40. 40.
    Stull, D. R., and Sinke, G. C., Thermodynamic Properties of the Elements, American Chemical Society, Washington, D.C. 1956.Google Scholar

Copyright information

© The Humana Press Inc. 1984

Authors and Affiliations

  • Leo Brewer
    • 1
  1. 1.Materials and Molecular Research Division, Lawrence Berkeley Laboratory, and Department of ChemistryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations