Calcium Regulation of Smooth Muscle Actomyosin

  • Samuel Chacko
  • Arline Rosenfeld
  • George Thomas
Part of the Contemporary Biomedicine book series (CB, volume 5)


The contractile process in muscle is manifested by an increased cross-bridge cycling and the development of tension or, in biochemical terms, by an activation of Mg2+ -ATPase activity of myosin by actin. It is generally accepted that this process is regulated by free calcium ion concentration in the muscle cell. The factors and the cell components that regulate the intracellular calcium concentration in smooth muscle is the topic of other chapters (Chapters 3–7) in this book. This chapter focuses on the contractile proteins in smooth muscles, particularly the regulation of actin-activated ATP hydrolysis of smooth muscle myosin.


Light Chain Thin Filament Myosin Light Chain Kinase Smooth Muscle Myosin Myosin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hartshorne, D. J., and A. Gorecka. Biochemistry of contractile proteins of smooth muscle. In Handbook of Physiology—The Cardiovascular System, Vol. II, Vascular Smooth Muscle, pp 93–120, 1980. Eds.: Bohr, Somlyo, and Sparks. American Physiological Society, Bethesda, 1980, pp 93–120.Google Scholar
  2. 2.
    Lowey, S. In Fibrous Proteins. Industrial and Medical Aspects. Ed.: D. A. D. Parry and L. K. Gramen. Academic, New York, 1:1–25, 1979.Google Scholar
  3. 3.
    Kendrick-Jones, J., E. M. Szenti-Kiralyi, and A. G. Szent-Gyorgyi. Regulatory light chains in myosins. J. Mol. Biol. 104: 747–775, 1976.PubMedCrossRefGoogle Scholar
  4. 4.
    Perrie, W. T., L. B. Smillie, and S. V. Perry. A phosphorylated light-chain component of myosin from skeletal muscle. Biochem. J. 135: 151–164, 1973.PubMedGoogle Scholar
  5. 5.
    Frearson, N., B. W. W. Focant, and S. V. Perry. Phosphorylation of a light-chain component of myosin from smooth muscle. FEBBS Lett. 63: 27–32, 1976.CrossRefGoogle Scholar
  6. 6.
    Daniel, J. L., and R. S. Adelstein. Isolation and properties of platelet myosin light chain kinase. Biochem. 15: 23–70, 1976.Google Scholar
  7. 7.
    Elzinga, M., J. H. Collins, W. M. Kuehl, and R. S. Adelstein. Complete amino-acid sequence of actin of rabbit skeletal muscle. Proc. Nat. Acad. Sci. USA. 70: 2687–2691, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Strezelecka-Golaszecuska, H., E. Prochiniewicz, E. Nowak, and S. Zmoozynski. Chicken gizzard actin: polymerization and stability. Eur. J. Biochem. 104: 41–52, 1980.CrossRefGoogle Scholar
  9. 9.
    Gordon, D. J., E. Eisenberg, and E. D. Korn. Characterization of cytoplasmic actin isolated from Acanthamoeba castellanii by a new method. J. Biol. Chem. 251: 4788 4786, 1976.Google Scholar
  10. 10.
    Stone, D., and L. B. Smillie. The amino acid sequence of rabbit skeletal muscle tropomyosin. J. Biol. Chem. 253: 1137–1148, 1978.PubMedGoogle Scholar
  11. 11.
    McLachlan, A. D. and M. Stewart. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. Mol. Biol. 98: 293–298, 1975.PubMedCrossRefGoogle Scholar
  12. 12.
    Weber, A., and J. M. Murray. Molecular control mechanisms in muscle contraction. Physiol. Rev. 53: 612–673, 1973.PubMedGoogle Scholar
  13. 13.
    G. N. Philips, Jr., J. P. Fillers, and C. Cohen. Motions of tropomyosin. Byosphys. J. 32: 485–502, 1980.CrossRefGoogle Scholar
  14. 14.
    Jakes, R., F. Northrop, and J. Kendrick-Jones. Calcium binding regions of myosin ‘regulatory’ light chains. FEBBS Lett. 70: 229–234. 1976.CrossRefGoogle Scholar
  15. 15.
    Yazawa, M., H. Kuwayama, and K. Yagi. Modulator protein as a Ca2+-dependent activation of rabbit skeletal myosin light-chain kinase. Purification and characterization. J. Biochem. Tokyo 84: 1253–1258, 1978.PubMedGoogle Scholar
  16. 16.
    Dabrowska, R., J. M. F. Sherry, D. K. Aromatorio, and D. J. Hartshorne. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochem. 17: 253–258, 1978.CrossRefGoogle Scholar
  17. 17.
    Hartshorne, D. J., R. F. Siemankowski, and M. O. Aksoy. Ca regulation in smooth muscle and phosphorylation: some properties of the myosin light chain kinase. In Regulatory Mechanisms of Muscle Contraction. Eds.: Ebashi, Maruyama, Endo. Jap. Sci. So. Press, Tokyo/ Springer-Verlag, Berlin, pp 287–301, 1980.Google Scholar
  18. 18.
    Hathaway, D. R., and R. S. Adelstein. Human platelet myosin light chain kinase requires the calcium binding protein calmodulin for activity. Proc. Natl. Acad. Sci. USA. 76: 1653–1657, 1979.PubMedCrossRefGoogle Scholar
  19. 19.
    Adelstein, R. S., M. A. Conti, D. R. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3’:5’-monophosphate-dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.PubMedGoogle Scholar
  20. 20.
    Dabrowska, R., and D. J. Hartshorne. A Ca2+- and modulation-dependent myosin light chain kinase from nonmuscle cells. Biochem. Biophys. Res. Commun. 85: 1352–1359.PubMedCrossRefGoogle Scholar
  21. 21.
    Nairn, A. C., and S. V. Perry. Calmodulin and myosin light-chain kinase of rabbit fast skeletal muscle. Biochem. J. 179: 89–97, 1979.PubMedGoogle Scholar
  22. 22.
    Waisman, D. M., T. J. Singh, and J. H. Klang. The modulatorydependent protein kinase. A multifunctional protein kinase activatable by the Ca2+-dependent modulator protein of the cyclic nucleotide system. J. Biol. Chem. 253: 3387–3390, 1978.PubMedGoogle Scholar
  23. 23.
    Yerna, M.J., R. Dabrowska, D. J. Hartshorne, and R. D. Goldman. Calcium-sensitive regulation of actin—myosin interactions in baby hamster kidney (BHK-21) cells. Proc. Natl. Acad. Sci. USA. 76: 184–188, 1979.PubMedCrossRefGoogle Scholar
  24. 24.
    Bremel, R. D., and M. E. Shaw. Conversion of calcium-sensitive myosin light-chain kinase to a calcium-insensitive form. FEBBS Lett. 88: 242–246, 1978.CrossRefGoogle Scholar
  25. 25.
    Bhalla, R. C., R. V. Sharma, and R. C. Gupta. Isolation of two myosin light-chain kinases from bovine carotid artery and their regulation by phosphorylation mediated by cyclic AMP-dependent protein kinase. Biochem. J. 203: 583–592, 1982.PubMedGoogle Scholar
  26. 26.
    Walsh, M. P., B. Vallet, F. Autric, and J. G. Demaille. Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase. J. Biol. Chem. 254: 12136–12144, 1979.PubMedGoogle Scholar
  27. 27.
    Walsh, M. P., S. Hinkins, I. L. Flink, and D. J. Hartshorne. Bovine stomach myosin light-chain kinase: purification, characterization, and comparison with the turkey gizzard enzyme. Biochem. 32: 6890–6896, 1982.Google Scholar
  28. 28.
    Adelstein, R. S., M. A. Conti, D. R. Hathaway, and C. B. Klee. Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chem. 253: 8347–8350, 1978.PubMedGoogle Scholar
  29. 29.
    Conti, M. A., and R. S. Adelstein. Phosphorylation by cyclic adenosine 3’:5’-monophosphate-dependent protein kinase regulates myosin light chain kinase. Fed. Proc. 39: 1569–1573, 1980.PubMedGoogle Scholar
  30. 30.
    Morgan, M., V. S. Perry, and J. Ottaway. Myosin-light-chain phosphatase. Biochem. J. 157: 687–697, 1976.PubMedGoogle Scholar
  31. 31.
    Pato, M. D., and R. S. Adelstein. Characterization of myosin phosphatase. I. from smooth muscle. Biophys. J. 33: 278a, 1981.Google Scholar
  32. 32.
    Pato, M. D., and R. S. Adelstein. Purification and characterization of a multisubunit phosphatase from turkey gizzard smooth muscle. J. Biol. Chem. 258: 7047–7054, 1983.PubMedGoogle Scholar
  33. 33.
    Pato, M. D., and R. S. Adelstein. Characterization of a Mg’- dependent phosphatase from turkey gizzard smooth muscle. J. Biol. Chem. 258: 7055–7058. 1983.PubMedGoogle Scholar
  34. 34.
    Yamaguchi, M., Y. Miyazawa, and T. Sekine. Preparation and properties of smooth muscle myosin from horse esophagus. Biochem. Biophys. Acta. 216: 411–421, 1970.Google Scholar
  35. 35.
    Chacko, S., M. A. Conti, and R. S. Adelstein. The effect of phosphorylation of smooth muscle myosin on actin activation and Ca’ regulation. Proc. Natl. Acad. Sci. 74: 129–133, 1977.PubMedCrossRefGoogle Scholar
  36. 36.
    Chacko, S., and A. Rosenfeld. Regulation of actin-activated ATP hydrolysis by arterial myosin. Proc. Natl. Acad. Sci. USA 78: 292–296, 1982.CrossRefGoogle Scholar
  37. 37.
    Chacko, S. Effect of phosphorylation, Ca2+ and tropomyosin on actin-activated ATPase activity of mammalian smooth muscle myosin. Biochemistry 20: 702–707, 1981.CrossRefGoogle Scholar
  38. 38.
    Sobieszek, A., and J. V. Small. Myosin-linked calcium regulation in vertebrate smooth muscle. J. Mol. Biol. 102: 75–92, 1976.PubMedCrossRefGoogle Scholar
  39. 39.
    Gorecka, A., M. O. Aksoy, and D. J. Hartshorne. The effect of phosphorylation of gizzard myosin on actin activation. Biochem. Biophys. Res. Commun. 71: 325–331, 1976.PubMedCrossRefGoogle Scholar
  40. 40.
    Hartshorne, D. J., and A. J. Persechini. Phosphorylation of myosin as a regulatory component in smooth muscle. Ann. N.Y. Acad. Sci. 356: 130–141, 1980.PubMedCrossRefGoogle Scholar
  41. 41.
    Sellers, J. R., P. B. Chock, and R. S. Adelstein. Cooperative interactions between the two heads of smooth muscle myosin. Biophy. J. 41: 153a, 1983.Google Scholar
  42. 42.
    Sellers, J. R., and R. S. Adelstein. Cooperativity and the reversible phosphorylation of smooth muscle heavy meromyosin. Biophy. J. 37: 262a, 1982.Google Scholar
  43. 43.
    Persechini, A., and Hartshorne. Ordered phosphorylation of the two 20,000 molecular weight light chains of smooth muscle myosin. Biochem. 22: 470–476, 1983.CrossRefGoogle Scholar
  44. 44.
    Chantler, P. D., J. R. Sellers, and A. G. Szent-Gyorgyi. Cooperativity in scallop myosin. Biochem. 20: 210–216, 1981.CrossRefGoogle Scholar
  45. 45.
    Sellers, J. R., P. D. Chantler, and A. G. Szent-Gyorgyi. Hybrid formation between scallop myofibrils and foreign regulatory light-chains. J. Mol. Biol. 144: 223–245, 1980.PubMedCrossRefGoogle Scholar
  46. 46.
    Onishi, H., H. Suzuki, K. Nakamura, K. Takahashi, and S. Watanabe. Adenosine triphosphatase activity and “thick filament” formation of chicken gizzard myosin in low salt media. J. Biochem. 83: 835–847, 1978.PubMedGoogle Scholar
  47. 47.
    Suzuki, H., H. Onishi, D. Takahashi, and S. Watanabe. Structure of chicken gizzard myosin. J. Biochem. 84: 1529–1542, 1978.PubMedGoogle Scholar
  48. 48.
    Scholey, J. M., K. A. Taylor, and J. Kendrick-Jones. Regulation of non-muscle myosin assembly by calmodulin-dependent light chain kinase. Nature (London) 287: 233–235, 1980.CrossRefGoogle Scholar
  49. 49.
    Onishi, H., and T. Wakabayashi. Electron microscopic studies of myosin molecules from chicken gizzard muscle I: the formation of the intramolecular loop in the myosin tail. J. Biochem. 92: 871–879, 1982.PubMedGoogle Scholar
  50. 50.
    Trybus, K. M., T. W. Huiatt, and S. Lowey. A bent monomeric conformation of myosin from smooth muscle. Proc. Nat’l. Acad. Sci. USA 79: 6151–6155, 1982.CrossRefGoogle Scholar
  51. 51.
    Somlyo, A. V. and T. M. Butler. Myosin filaments have nonphosphorylated light-chains in relaxed smooth-muscle. Nature 294: 567–569, 1981.PubMedCrossRefGoogle Scholar
  52. 52.
    Sobieszek, A. and J. V. Small. Regulation of the actin myosin interaction in vertebrate smooth muscle: activation via a myosin light-chain kinase and the effect of tropomyosin. J. Mol. Biol. 12: 559–576, 1977.CrossRefGoogle Scholar
  53. 53.
    Nath, N., A. Carlos, and S. C. Seidel. Actin-activated ATPase activity of phosphorylated myosin from pulmonary artery at low Mg2+ concentration; effect of actin and tropomyosin from different sources. Biophys. J. 41: 154a, 1983.Google Scholar
  54. 54.
    Bremel, R. D., J. M. Murray, and A. Weber. Manifestations of cooperative behavior in the regulated actin filament during actin-activated ATP hydrolysis in the presence of calcium. Cold Spring Harb. Symp. Grant. Biol. 37:267–275, ( Cold Spring Harbor Laboratory, Cold Spring Harber 1972 ).Google Scholar
  55. 55.
    Eaton, B. L., D. R. Kominz, and E. Eisenberg. Correlation between the inhibition of acto-heavy meromyosin ATPase and the binding of tropomyosin to F-actin: effect of Mg2+, KC1, troponin I and troponin C. Biochemistry. 14: 2718–2725, 1975.PubMedCrossRefGoogle Scholar
  56. 56.
    Sobieszek, A., and J. V. Small. Effect of muscle and nonmuscle tropomyosin in reconstituted skeletal muscle actomyosin. Eur. J. Biochem. 118: 533–539, 1981.PubMedCrossRefGoogle Scholar
  57. 57.
    Ebashi, S. Regulation of muscle contraction in cell and muscle motility. Eds.: R. M. Dowben and J. W. Shay. Plenum Publishing Corporation, pp 79–87, 1983.Google Scholar
  58. 58.
    Rees, D. D., and D. W. Frederiksen. Calcium regulation of porcine aortic myosin. J. Biol. Chem. 256: 357–364, 1981.PubMedGoogle Scholar
  59. 59.
    Sherry, J. M. F., A. Gorecka, M. O. Aksoy, R. Dabrowska, and D. J. Hartshorne. Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochem. 17: 4417–4418, 1978.Google Scholar
  60. 60.
    Rosenfeld, A., and S. Chacko. Phosphorylation and calcium binding by myosin. Fed. Proc. 40: 1786, 1981.Google Scholar
  61. 61.
    Hartshorne, D. J., and U. Mrwa. Regulation of smooth muscle actomyosin. Blood Vessels. 19: 1–18, 1982.PubMedGoogle Scholar
  62. 62.
    Nag, S., and J. C. Seidel. Dependence on Ca2+ and tropomyosin of the actin-activated ATPase activity of phosphorylated gizzard myosin in the presence of low concentrations of Mg2+. J. Biol. Chem. 258: 6444–6449, 1983.PubMedGoogle Scholar
  63. 63.
    Heaslip, R. J., and S. Chacko. Comparison of the ATPase activities of phosphorylated and thiophosphorylated chicken gizzard myosin. Biophys. J. 45: 43a, 1984.Google Scholar
  64. 64.
    Ebashi, S., Y. Nonomura, S. Nakamura, H. Nakasone, and K. Kohama. Regulatory mechanism in smooth muscle: actin-linked regulation. Fed. Proc. 41: 2863–2867, 1982.PubMedGoogle Scholar
  65. 65.
    Ebashi, S. Regulation of muscle contraction. Proc. R. Soc. Lond. B207: 259–286, 1980.PubMedCrossRefGoogle Scholar
  66. 66.
    Mikawa, T., T. Toyo-oka, Y. Nonomura, and S. Ebashi. Essential factor of gizzard troponin fraction. J. Biochem. 81: 273–275, 1977.PubMedGoogle Scholar
  67. 67.
    Mikawa, T., Y. Nonomura, M. Hirata, S. Ebashi, and S. Kakiuchi. Involvement of an acidic protein in regulation of smooth muscle contraction by tropomyosin leiotonin system. J. Biochem. 84: 1633–1636. 1978.PubMedGoogle Scholar
  68. 68.
    Hirata, M., T. Mikawa, Y. Nonomura, and S. Ebashi. Ca2+ regulation in vascular smooth muscle, II. Ca2+ binding of aorta leiotonin. J. Biochem. 87: 369–378, 1980.PubMedGoogle Scholar
  69. 69.
    Nonomura, Y., T. Mikawa, and S. Ebashi. Ca2+-sensitive thin filament from chicken gizzard smooth muscle. Proc. Japan Acad. 56 (A): 178–183, 1980.CrossRefGoogle Scholar
  70. 70.
    Mikawa, T., Y. Nonomura, and S. Ebashi. Does phosphorylation of myosin light chain have direct relation to regulation in smooth muscle. J. Biochem. 82: 1789–1791, 1977.PubMedGoogle Scholar
  71. 71.
    Mikawa, T.: “Freezing” of the calcium-regulated structures of gizzard thin filaments by gluteraldehyde. J. Biochem. 85: 879–881, 1979.PubMedGoogle Scholar
  72. 72.
    Chacko, S., R. J. Heaslip and S. Ebashi. The effect of leiotonin on stably phosphorylated smooth muscle myosin. Fed. Proc. 43: 15–51.Google Scholar
  73. 73.
    Marston, S. B., R. M. Trevett, and M. Walters. Calcium ion-C regulated thin filaments from vascular smooth muscle. Biochem. J. 185: 355–365, 1980.PubMedGoogle Scholar
  74. 74.
    Walters, M., and S. B. Marston. Phosphorylation of the calcium ion-regulated thin filaments from vascular smooth muscle. Biochem. J. 197: 127–139, 1981.PubMedGoogle Scholar
  75. 75.
    Persechini, A. U. Mrwa, and D. J. Hartshorne. Effect of phosphorylation on the actin-activated ATPase activity of myosin. Biochem. Byophys. Res. Comm. 98: 800–805, 1981.CrossRefGoogle Scholar
  76. 76.
    Cole, H. A., J. A. Grand, and S. V. Perry. Non-correlation of phosphorylation of the P-light chain and the actin activation of the ATPase of chicken gizzard myosin. Biochem. J. 206: 319–328, 1982.PubMedGoogle Scholar
  77. 77.
    Moreland, R. S., and G. D. Ford. The influence of magnesium on calcium-activated, vascular smooth muscle actomyosin ATPase activity. Arc. Biochem. Biophy. 208: 325–333, 1981.CrossRefGoogle Scholar
  78. 78.
    DiSalvo, J., E. Gruenstein, and P. Silver. Ca2+ dependent phosphorylation of bovine aortic actomyosin. Proc. Soc. Exp. Med. 158: 410–414, 1978.Google Scholar
  79. 79.
    Small, J. V. and A. Sobieszek. Ca-regulation of mammalian smooth muscle actomyosin via a kinase-phosphatase-dependent phosphorylation and dephosphorylation of 20,000-Mr light chain of myosin. Eur. J. Biochem. 76: 521–530, 1977.PubMedCrossRefGoogle Scholar
  80. 80.
    Dabrowska, R., S. Hinkins, M. P. Walsh, and D. J. Hartshorne. The binding of smooth muscle myosin light chain kinase to actin. Biochem. and Biophy. Res. Comm. 107: 1542–1531, 1982.Google Scholar
  81. 81.
    Driska, S. P., Aksoy, M. O., and Murphy, R. A.: Myosin light chain phosphorylation associated with contraction in arterial smooth muscle. Am. J. Physiol. 240: C222 - C233, 1981.PubMedGoogle Scholar
  82. 82.
    Barron, J. T., M. Barany, and K. Barany. Phosphorylation of the 20,000 dalton light chain of myosin of intact arterial smooth muscle in rest and in contraction. J. Biol. Chem. 254: 4954–4956, 1979.PubMedGoogle Scholar
  83. 83.
    de Lanerdolle, P., and J. T. Stull. Myosin phosphorylation during contraction and relaxation of tracheal smooth muscle. J. Biol. Chem 255: 9993–10000, 1980.Google Scholar
  84. 84.
    Hoar, P. E., W. G. L. Kerrick, and P. S. Cassidy. Chicken gizzard: relation between calcium-activated phosphorylation and contraction. Science 204: 503–506, 1979.PubMedCrossRefGoogle Scholar
  85. 85.
    Butler, T. M., and M. J. Siegman. Chemical energetics of contraction in mammalian smooth muscle. Fed. Proc. 41: 204–208, 1982.PubMedGoogle Scholar
  86. 86.
    Ruegg, J. C., and R. J. Paul. Vascular smooth muscle calmodulin and cyclic AMP dependent protein kinase alters calcium sensitivity in porcine carotid skinned fiber. Circ. Res. 50:394–399, 1982.PubMedGoogle Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • Samuel Chacko
  • Arline Rosenfeld
  • George Thomas

There are no affiliations available

Personalised recommendations