Skip to main content

Mechanisms of Smooth Muscle Relaxation

  • Chapter
Calcium and Contractility

Part of the book series: Contemporary Biomedicine ((CB,volume 5))

Abstract

Normally, contractions of smooth muscle, which follow activation of the ATPase properties of myosin by phosphorylation in the presence of calmodulin and Ca (Chapter 2), are terminated by withdrawal of the initiating stimulus followed by a fall in the free cytoplasmic Ca concentration, mediated by the physiological systems that usually maintain the cation at a low level. Relaxation (or inhibition of contraction) in the presence of a contractile stimulus, can be achieved by a reduction in free cytoplasmic Ca levels or by reducing the rate of myosin phosphorylation in the presence of Ca-calmodulin through phosphorylation of myosin light chain kinase by a cyclic AMP-dependent phosphokinase (Chapter 2).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiken, J. W. Inhibitors of prostaglandin synthesis specifically antagonize bradykinin and angiotensin-induced relaxations of the isolated celiac artery from the rabbit. Pharmacologist 16: 295, 1974.

    Google Scholar 

  2. Alexander, R. W., J. A. Fontana, and W. Lovenberg. cAMP dependent protein kinase in rabbit aortic microsomes and its relation to Ca’ uptake. Federation Proc. 32: 711, 1973.

    Google Scholar 

  3. Allen, C. J. Ca-binding properties of canine aortic microsomes: lack of effect of c-AMP. Blood Vessels 14: 91–104, 1977.

    PubMed  CAS  Google Scholar 

  4. Asano, M., Y. Suzyki, and H. Hidaka. Effects of various calmodulin antagonists on contraction of rabbit aortic strips. J. Pharmacol. Exp. Ther. 220: 191–196, 1982.

    PubMed  CAS  Google Scholar 

  5. Aurbach, G. D. Polypeptide and amine hormone regulation of adenylate cyclase. Ann. Rev. Physiol. 44: 653–666, 1982.

    Article  CAS  Google Scholar 

  6. Berridge, M. J. Receptors and calcium signalling. TIPS 1: 419–424, 1980.

    CAS  Google Scholar 

  7. Bhalla, R. C., R. C. Webb, D. Singh, and T. Brock. Role of cyclic AMP in aortic microsomal phosphorylation and calcium uptake. Am. J. Physiol. 234:HSO8–H514, 1978.

    Google Scholar 

  8. Bohme, E., H. Graf, and G. Schultz. Effects of sodium nitroprusside and other smooth muscle-relaxants on cyclic GMP formation in smooth muscle and platelets. Adv. Cyclic Nucleotide Res. 9: 131–143, 1978.

    PubMed  CAS  Google Scholar 

  9. Bolton, T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 606–718, 1979.

    PubMed  CAS  Google Scholar 

  10. Boström, S. L., B. Ljung, S. Mardh, S. Forsen, and E. Thulin. Interaction of the antihypertensive drug felodipine with calmodulin. Nature 292: 777–778, 1981.

    Article  PubMed  Google Scholar 

  11. Broekaert, A., and T. Godraind. A comparison of the inhibition by cinnarizine and papaverine of the noradrenaline evoked contraction of isolated rabbit vessels in presence and absence of extracellular calcium. Eur. J. Pharmacol. 53: 281–288, 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Bucher, B., C. Heitz, and J. C. Stoclet. In vivo decrease of adenylate cyclase responsiveness to isoproterenol in the spontaneously hypertensive rat. Biochem. Pharmacol. 30: 2583–2506, 1981.

    Article  Google Scholar 

  13. Cauvin, C., R. Loutzenhiser, and C. van Breemen. Mechanisms of calcium antagonist-induced vasodilation. Ann. Rev. Pharmacol. Toxicol 23: 373–396, 1983.

    Article  CAS  Google Scholar 

  14. Cherry, P. D., R. F. Furchgott, and J. V. Zawadzki. The indirect nature of bradykinin relaxation of isolated arteries: endothelial dependent and independent components. Federation Proc. 40: 689, 1980.

    Google Scholar 

  15. Cherry, P. D., R. F. Furchgott, J. V. Zawadzki, and D. Jothianandan. Role of endothelial cells in relaxation of isolated arteries by bradykinin. Proc. Natl. Acad. Sci. 79: 2106–2110, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Clyman, R. I., V. C. Manganiello, C. J. Lovell-Smith, and M. Vaughan. Calcium uptake by subcellular fractions of human umbilical artery. Am. J. Physiol. 231: 1074–1081, 1976.

    PubMed  CAS  Google Scholar 

  17. Cornish, E. J., R. G. Goldie, E. V. Krstew, and R. C. Miller. Effect of indomethacin on responses of sheep isolated coronary artery to arachidonic acid. Clin. Exp. Pharmacol. Physiol. 10: 171–175, 1983.

    Article  PubMed  CAS  Google Scholar 

  18. Cornish, E. J., Goldie, and R. C. Miller. Catecholamine uptake by isolated coronary arteries and atria of the kitten. Br. J. Pharmacol. 63: 445 456, 1978.

    Google Scholar 

  19. De Mey, J. G., and P. M. Vanhoutte. Role of the intima in cholinergic and purinergic relaxation of isolated canine femoral arteries. J. Physiol., London 316: 347–355, 1981.

    PubMed  Google Scholar 

  20. Diamond, J. Evidence for dissociation between cyclic nucleotide levels and tension in smooth muscle. In: The Biochemistry of Smooth Muscle, edited by N. L. Stephens. Baltimore: University Park Press, pp 343–360, 1977.

    Google Scholar 

  21. Diamond, J. Role of cyclic nucleotides in control of smooth muscle contraction. In: Advances in Cyclic Nucleotide Research, edited by W. G. George and L. J. Ignarro: New York: Raven Press, Vol 9, p 327, 1978.

    Google Scholar 

  22. Duckles, S. P., and S. I. Said. Vasoactive intestinal peptide as a neurotransmitter in the cerebral circulation. Eur. J. Pharmacol. 78: 371–374, 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Ericsson, E. E. Adrenergic beta-receptor activity and cyclic AMP-metabolism in vascular smooth muscle, variations with age. Scand. J. Clin. Lab. Invest. 34:Suppl 141, 63, 1974.

    Google Scholar 

  24. Filburn, C. R., F. T. Colpo, and B. Sacktor. Mechanism of phenothiazine inhibition of Cat+-dependent guanosine (cyclic) monophosphate phosphodiesterase of brain. Mol. Pharmacol. 15: 257–262, 1979.

    PubMed  CAS  Google Scholar 

  25. Fitzpatrick, D. F., and A. Szentivanyi. Stimulation of calcium uptake into aortic microsomes by cyclic AMP and cyclic AMP dependent protein kinase. Naunyn-Schmiedeberg’s Arch. Pharmacol. 298: 255–257, 1977.

    Article  CAS  Google Scholar 

  26. Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol. 17: 149–166, 1977.

    Article  CAS  Google Scholar 

  27. Fleisch, J. H. Further studies on the effect of aging on betaadrenoceptor activity of rat aorta. Br. J. Pharmacol. 42: 311–313, 1971.

    PubMed  CAS  Google Scholar 

  28. Fleisch, J. H. Age-related changes in the sensitivity of blood vessels to drugs. Pharmacol, Ther. 8: 477–487, 1980.

    CAS  Google Scholar 

  29. Flower, R. J. Drugs which inhibit prostaglandin biosynthesis, Pharmacol. Rev. 26: 33–67, 1974.

    PubMed  CAS  Google Scholar 

  30. Flower, R. J. and C. J. Blackwell. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem. Pharmacol. 25: 285–291, 1976.

    Article  PubMed  CAS  Google Scholar 

  31. Furchgott, R. F., and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373–376, 1980.

    Article  PubMed  CAS  Google Scholar 

  32. Furchgott, R. F., and J. V. Zawadzki. ATP relaxes rabbit aortic smooth muscle by both an indirect action via endothelial cells and a direct action. Pharmacologist 22: 271, 1980.

    Google Scholar 

  33. Godfraind, T. The action of cinnarizine and of phentolamine on the noradrenaline-depressant calcium influx in vascular smooth muscle. Br. J. Pharmacol. 52: 120P, 1974.

    Google Scholar 

  34. Godfraind, T. Isoprenaline relaxation in vascular smooth muscle of aged rats: effect of flunarizine. Arch. int. Pharmacodyn. Ther. 230: 331, 1977.

    PubMed  CAS  Google Scholar 

  35. Godfraind, T. Alternative mechanisms for the potentiation of the relaxation evoked by isoprenaline in aortae from young and aged rats. Eur. J. Pharmacol. 53: 273–279, 1979.

    Article  PubMed  CAS  Google Scholar 

  36. Godfraind, T. Mechanism of action of calcium entry blockers. Federation Proc. 40: 2866–2871, 1982.

    Google Scholar 

  37. Godfraind, T. Actions of nifedipine on Ca fluxes and contraction in isolated arteries. J. Pharmacol. Exp. Ther. 224: 443–450, 1983.

    PubMed  CAS  Google Scholar 

  38. Godfraind, T., and D. Dieu. The inhibition by flunarizine of the norepinephrine-evoked contraction and calcium influx in rat aorta and mesenteric arteries. J. Pharmacol. Exp. Ther. 217: 510–515, 1981.

    PubMed  CAS  Google Scholar 

  39. Godfraind, T., and A. Kaba. Blockade or reversal of the contraction induced by calcium and adrenaline in depolarized arterial smooth muscle. Br. J. Pharmacol. 36: 549–560, 1969.

    PubMed  CAS  Google Scholar 

  40. Godfraind, T., A. Kaba, and P. Polster. Differences in sensitivity of arterial smooth muscles to inhibition of their contractile response to depolarization by potassium. Arch. int. Pharmacodyn. Ther. 172: 235–239, 1968.

    PubMed  CAS  Google Scholar 

  41. Godfraind, T., and R. C. Miller. Actions of PGF2,, and noradrenaline on Ca exchange and contraction in rat mesenteric arteries and their sensitivity to calcium entry blockers. Br. J. Pharmacol. 75: 229–236, 1982.

    PubMed  CAS  Google Scholar 

  42. Godfraind, T., and R. C. Miller. The study of receptors and Ca movements in smooth muscle as a model for presynaptic events. In: Neurotransmitter Interactions and Compartmentation, edited by H. F. Bradford: New York, London: pp 121–139, 1982.

    Google Scholar 

  43. Godfraind, T., and R. C. Miller. Specificity of action of Ca entry blockers, a comparison of their actions in rat arteries and in human coronary arteries. Circulation Res. 52:Suppl. 1, 181–191, 1983.

    Google Scholar 

  44. Godfraind, T., and R. C. Miller. Pharmacology of coronary arteries. In: Factors Influencing the Course of Myocardial Ischemia, edited by Gotto and DeBakey: Amsterdam-New York-Oxford, Elsevier Biomedical Press, pp 101–119, 1983.

    Google Scholar 

  45. Godfraind, T., R. C. Miller, and J. Socrates Lima. Selective alphaland alpha2-adrenoceptor agonist-induced contractions and 45Ca fluxes in the rat isolated aorta. Br. J. Pharmacol. 77: 597–604, 1982.

    PubMed  CAS  Google Scholar 

  46. Godfraind, T., and N. Morel. Identification of the specific binding of flunarizine to rat aorta. Br. J. Pharmacol. 75: 517P, 1981.

    Google Scholar 

  47. Godfraind, T., and P. Polster. Etude comparative de médicaments inhibant la réponse contractile de vaisseaux isolés d’origine humaine ou animale. Thérapie 23: 1209–1220, 1968.

    PubMed  CAS  Google Scholar 

  48. Goldberg, N. D., and M. K. Haddox. Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem. 46: 823–896, 1977.

    Article  PubMed  CAS  Google Scholar 

  49. Greengard, P. Cyclic nucleotides, phosphorylated proteins and neuronal function. Distinguished lecture series of the Society of General Physiologists, Vol 1, New York: Raven Press, 1978.

    Google Scholar 

  50. Hardman, J. G. Cyclic nucleotides and smooth muscle contractions: some conceptual and experimental considerations. In: Smooth Muscle, edited by E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita. London: Edward Arnold, pp 249–262, 1981.

    Google Scholar 

  51. Hayashi, S., and N. Toda. Age related changes in the response of rabbit isolated aortae to vasoactive agents. Br. J. Pharmacol. 64: 229–237, 1978.

    PubMed  CAS  Google Scholar 

  52. Hidaka, H., T. Yamaki, M. Naka, T. Tanaka, H. Hayashi, and R. Kobayashi. Calcium-regulated modulator protein interacting agents inhibit smooth muscle calcium-stimulated protein kinase and ATPase. Mol. Pharmac. 17: 66–72, 1980.

    CAS  Google Scholar 

  53. Hidaka, H., T. Yamaki, T. Totsuka, and M. Asano. Selective inhibitors of Cat `-binding modulators of phosphodiesterase produce vascular relaxation and inhibit actinomyosin interaction. Mol. Pharmacol. 15: 49–59, 1979.

    PubMed  CAS  Google Scholar 

  54. Krebs, E. G., and J. A. Beavo. Phosphorylation-dephosphorylation of enzymes. Ann. Rev. Biochem. 48: 923–959, 1979.

    Article  PubMed  CAS  Google Scholar 

  55. Kukovetz, W. R., A. Wurm, I. Rinner, S. Holzmann, and G. Poch. Stimulation of adenylcyclase in coronary smooth muscle by adenosine. In: Excitation-contraction Coupling in Smooth Muscle, edited by R. Casteels, T. Godfraind, and J. C. Rüegg. Amsterdam: Elseviar Biomedical Press, pp 399–406, 1977.

    Google Scholar 

  56. Kulkarni, P. S., R. Roberts, and P. Needleman. Endogenous synthesis of a labile coronary dilating substance from arachidonic acid. Federation Proc. 35: 298, 1976.

    Google Scholar 

  57. Kulkarni, P. S., R. Roberts, and P. Needleman. Paradoxical endogenous synthesis of a coronary dilating substance from arachidonate. Prostaglandins 12: 337–353, 1976.

    Article  PubMed  CAS  Google Scholar 

  58. Levin, R. M., and B. Weiss. Binding of trifluoperazine to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. Mol. Pharmacol. 13: 690–697, 1977.

    PubMed  CAS  Google Scholar 

  59. Levin, R. M., and B. Weiss. Selective binding of antipsychotics and other psychoactive agents to the calcium-dependent activator of cyclic nucleotide phosphodiesterase. J. Pharmacol. Exp. Ther. 208: 454–459, 1979.

    PubMed  CAS  Google Scholar 

  60. Maclntyre, D. E., J. D. Pearson, and J. L. Gordon. Localization and stimulation of prostacyclin production in vascular cells. Nature 271: 549–551, 1978.

    Article  Google Scholar 

  61. Meisheri, K. D., and C. van Breemen. Effects of beta-adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP. J. Physiol. London 331: 429–441, 1982.

    PubMed  CAS  Google Scholar 

  62. Moncada, S., A. G. Herman, E. A. Higgs, and J. R. Vane. Differential formation of prostacyclin (PGX or PGI2) by layers of the arterial wall. An explanation for the anti-thrombotic properties of vascular endothelium. Thromb. Res. 11: 323–344, 1977.

    Article  PubMed  CAS  Google Scholar 

  63. Moncada, S., and J. R. Vane. Arachidonic acid metabolites in the cardiovascular system. In: Cell Membrane in Function and Dysfunction of Vascular Tissue, edited by T. Godfraind, and P. Meyer. Holland: Elsevier Biomedical Press, pp 105–126, 1981.

    Google Scholar 

  64. Morel, N., M. Wibo, and T. Godfraind. A calmodulin-stimulated Cat+ pump in rat aorta plasma membranes. Biochim. Biophys. Acta 644: 82–88, 1981.

    Article  PubMed  CAS  Google Scholar 

  65. Murad, F., C. K. Mittal, W. P. Arnold, and J. M. Braughler. Effect of nitrocompound smooth muscle relaxants and other materials on cyclic GMP metabolism. In: Advances in Pharmacology and Therapeutics, Vol 3, Ions-Cyclic Nucleotides-Cholinergy, edited by J. C. Stoclet. Oxford: Pergamon Press, pp 125–132, 1978.

    Google Scholar 

  66. Murphy, E., K. Coll, T. L. Rich, and J. R. Williams. Hormonal effects on calcium homeostasis in isolated hepatocytes. J. Biol. Chem. 255: 6600–6608, 1980.

    PubMed  CAS  Google Scholar 

  67. Nimmo, H. G., and P. Cohen. Hormonal control of protein phosphorylation. Adv. Cyclic Nucleotide Res. 8: 145–266, 1977.

    PubMed  CAS  Google Scholar 

  68. Nishikori, K., T. Takenaka, and H. Maeno. Stimulation of microsomal calcium uptake and protein phosphorylation by adenosine cyclic 3’, 5’-monophosphate in rat uterus. Mol. Pharmacol. 13: 671–678, 1977.

    PubMed  CAS  Google Scholar 

  69. Norman, J. A., A. H. Drummond, and P. Moser. Inhibition of calcium-dependent regulator-stimulated phosphodiesterase activity by neuroleptic drugs is unrelated to their clinical efficacy. Mol. Pharmacol 16: 1089–1094, 1979.

    PubMed  CAS  Google Scholar 

  70. Popescu, L. M. Cytochemical study of the intracellular calcium distribution in smooth muscle. In: Excitation-Contraction Coupling in Smooth Muscle, edited by R. Casteels, T. Godfraind, and J. C. Rüegg. Holland: Elsevier Biomedical Press, pp 13–23, 1977.

    Google Scholar 

  71. Rapoport, R. M., M. B. Draznin, and F. Murad. Sodium nitroprusside-induced protein phosphorylation in intact rat aorta is mimicked by 8-bromo cyclic GMP. Proc. Natl. Acad. Sci. 79: 6470–6474, 1982.

    Article  PubMed  CAS  Google Scholar 

  72. Rodbell, M. The role of hormone receptors and GTP-regulatory proteins in membrane transduction. Nature 284: 17–22, 1980.

    Article  PubMed  CAS  Google Scholar 

  73. Saida, K., and C. van Breemen. Mechanisms of Ca’ antagonist-induced vasodilation. Intracellular actions. Circulation Res. 52: 137–142, 1983.

    PubMed  CAS  Google Scholar 

  74. Salmon, J. A., D. R. Smith, R. J. Flower, S. Moncada, and J. R. Vane. Further studies on the conversion of prostaglandin endoperoxide into prostacyclin by porcine aorta microsomes. Biochim. biophys. Acta 523: 250–262, 1978.

    PubMed  CAS  Google Scholar 

  75. Sands, H., J. Mascali, and E. Paietta. Determination of calcium transport and phosphoprotein phosphatase activity in microsomes from respiratory and vascular smooth muscle. Biochim. Biophys. Acta 500: 223–234, 1977.

    PubMed  CAS  Google Scholar 

  76. Schoeffter, P., and J. C. Stoclet. Age-related decrease of in vitro isoproterenol-induced cyclic AMP accumulation in rat aorta. Eur. J. Pharmacol. 77: 183–186, 1982.

    Article  PubMed  CAS  Google Scholar 

  77. Schultz, G., and J. G. Hardman. Regulation of cyclic GMP levels in the ductus deferens of the rat. Adv. Cyclic. Nucleotide Res. 5: 339–351, 1975.

    PubMed  CAS  Google Scholar 

  78. Silberbauer, K., H. Sinzinger, M. Winter, W. Fiegl, and F. Ring. Prostacyclin-like activity of endothelium and subendotheliumimportant for atherosclerosis? Experientia 34: 1471–1472, 1978.

    Article  PubMed  CAS  Google Scholar 

  79. Spedding, M. Comparison of “Ca’-antagonists” and trifluoperazine in skinned smooth muscle fibres. Br. J. Pharmacol. 75: 25P, 1982.

    Google Scholar 

  80. Starke, K. Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol. 77: 1–124, 1977.

    Article  PubMed  CAS  Google Scholar 

  81. Stoclet, J. C., and C. Lugnier. Inhibitors of cyclic nucleotide phosphodiesterases. In: Medicinal Chemistry Advances, edited by F. G. De Las Heras, and S. Vega. Oxford and New York: Pergamon Press, pp 435–445, 1981.

    Google Scholar 

  82. Taylor, W. M., V. Prpie, J. H. Exton, and F. L. Bygrave. Stable changes to calcium fluxes in mitochondria isolated from rat livers per-fused with alpha-adrenergic agonists and with glucagon. Biochem. J. 188: 443–450, 1980.

    PubMed  CAS  Google Scholar 

  83. Terragno, D. A., K. Crowshaw, N. A. Terragno, and J. C. McGiff. Prostaglandin synthesis by bovine mesenteric arteries and veins. Circulation Res. 36 (Suppl.1), 176–180, 1975.

    Google Scholar 

  84. Toda, N., and S. Hayashi. Age-dependent alteration in the response of isolated rabbit basilar arteries to vasoactive agents. J. Pharmacol. Exp. Ther. 211: 716–721, 1979.

    PubMed  CAS  Google Scholar 

  85. van Breemen, C., O. Hwang, and K. D. Meisheri. The mechanism of inhibitory action of diltiazem on vascular smooth muscle contractility. J. Pharmacol. Exp. Ther. 218: 459–463, 1981.

    PubMed  Google Scholar 

  86. Vane, J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 231: 232–235, 1971.

    CAS  Google Scholar 

  87. Van Nueten, J. M. Selectivity of calcium entry blockers. In: Calcium Modulators, edited by T. Godfraind, A. Albertini, and R. Paoletti. Holland: Elsevier Biomedical Press, pp 199–208, 1982.

    Google Scholar 

  88. Weiss, G. B. Sites sensitive to different types of calcium antagonist. In: Calcium Modulators, edited by T. Godfraind, A. Albertini, and R. Paoletti. Holland: Elsevier Biomedical Press, pp 209–220, 1982.

    Google Scholar 

  89. Weksler, B. B., A. J. Marcus, and E. A. Jaffe. Synthesis of prostaglandin 12 (prostacyclin) by cultured human and bovine endothelial cells. Proc. Natl. Acad. Sci. 74: 3922–3926, 1977.

    Article  PubMed  CAS  Google Scholar 

  90. Wells, J., N., and J. G. Hardman. Cyclic nucleotide phosphodiesterases. Adv. Cyclic Nucleotide Res. 8: 119–143, 1977.

    PubMed  CAS  Google Scholar 

  91. Wibo, M., N. Morel, and T. Godfraind. Differentiation of Cat+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle. Biochim. Biophys. Acta 649: 651–660, 1981.

    Article  PubMed  CAS  Google Scholar 

  92. Zawadzki, J. V., P. B. Cherry, and R. F. Furchgott. Comparison of endothelial-dependent relaxation of rabbit aorta by A23187 and by acetylcholine. Pharmacologist 22: 271, 1980.

    Google Scholar 

  93. Zawadzki, J. V., R. F. Furchgott, and P. Cherry. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by substance P. Federation Proc. 40: 689, 1981.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 The Humana Press Inc.

About this chapter

Cite this chapter

Godfraind, T., Miller, R.C. (1985). Mechanisms of Smooth Muscle Relaxation. In: Grover, A.K., Daniel, E.E. (eds) Calcium and Contractility. Contemporary Biomedicine, vol 5. Humana Press. https://doi.org/10.1007/978-1-4612-5172-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5172-9_4

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-4612-9596-9

  • Online ISBN: 978-1-4612-5172-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics