Advertisement

Cholinergic Interactions and Vascular Smooth Muscle Tone

  • Tony J-F. Lee
Part of the Contemporary Biomedicine book series (CB, volume 5)

Abstract

Acetylcholine (ACh) has been shown to consistently contract almost all mammalian nonvascular smooth muscles examined (15, 21, 24, 60). In contrast, the action of ACh on vascular smooth muscle tone has been found to be inconsistent. ACh, intravascularly administered, has been shown to induce vasodilation of most vascular beds (22), whereas it constricts several isolated blood vessels (53, 56, 73, 75, 121). However, the theory has prevailed that ACh is a vasodilator substance or transmitter and that the direct effect of ACh on vascular smooth muscle cells is relaxation (22, 126). This concept has recently been challenged by the findings about the obligatory role of endothelial cells in ACh-induced vasodilation (54, 85, 89, 91).

Keywords

Muscarinic Receptor Vasoactive Intestinal Polypeptide Adrenergic Nerve Cholinergic Nerve Cerebral Blood Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberts, P. and L. Stjarne. Facilitation, muscarinic and alphaadrenergic inhibition of the secretion of 3H-acetylcholine and 3H-noradrenaline from guinea-pig ileum myenteric nerve terminals. Acta Physiol. Scand. 116: 83–92, 1982.PubMedGoogle Scholar
  2. 2.
    Aubineau, P., R. Sercombe, and J. Seylaz. Parasympathetic influence of carbachol on local cerebral blood flow in the rabbit by a direct vasodilator action and an inhibition of the sympathetic-mediated vasoconstriction. Brit. J. Pharmacol. 68: 449–459, 1980.Google Scholar
  3. 3.
    Bell, C. Dual vasoconstrictor and vasodilator innervation of the uterine arterial supply in the guinea-pig. Circ. Res. 23: 279–289, 1968.PubMedGoogle Scholar
  4. 4.
    Bell, C. Fine structural localization of acetylcholinesterase at a cholinergic vasodilator nerve-arterial smooth muscle synapse. Circ. Res. 24: 61–70, 1969.PubMedGoogle Scholar
  5. 5.
    Bell, C. and G. Burnstock. Cholinergic vasomotor neuroeffector junctions. In Physiology and Pharmacology of Vascular Neuroeffector Systems. J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo, eds. Karger, Basel, 1971, pp 37–46.Google Scholar
  6. 6.
    Berne, R. M., H. DeGeest, and M. N. Levy. Influence of the cardiac nerves on coronary resistance. Am. J. Physiol. 208: 763–769, 1965.PubMedGoogle Scholar
  7. 7.
    Bevan, J. A., G. M. Buga, C. A. Jope, R. S. Jope, and H. Moritoki. Further evidence for a muscarinic component to the neural vasodilator innervation of cerebral and cranial extracerebral arteries of the cat. Circ. Res. 51: 421–429, 1982.PubMedGoogle Scholar
  8. 8.
    Bevan, J. A., W. Grastka, and M. O. Su. The bimodal basis of the contractile response of the rabbit ear artery to norepinephrine and other agonists. Europ. J. Pharmacol. 22: 47–53, 1973.Google Scholar
  9. 9.
    Bevan, J. A., T. A. McCalden, and R. M. Rapoport. Receptor-activated calcium mechanisms and their antagonism in cerebrovascular muscle. In New Perspectives on Calcium Antagonists. G. B. Weiss, ed. Clinical Physiology Series, American Physiological Society, 1981, pp 123–129.Google Scholar
  10. 10.
    Bevan, J. A. and C. Su. Variation of intra-and perisynaptic adrenergic transmitter concentrations with width of synaptic cleft in vascular tissue. J. Pharmacol. Exp. Ther. 190: 30–38, 1974.PubMedGoogle Scholar
  11. 11.
    Bill, A. and J. Stjernschantz. Cholinergic vasoconstrictor effects in the rabbit eye: vasomotor effects of pentobarbital anesthesia. Acta Physiol. Scand. 108: 419–424, 1980.PubMedGoogle Scholar
  12. 12.
    Bohr, D. F. Vascular smooth muscle: dual effect of calcium. Science 139: 597–599, 1963.PubMedGoogle Scholar
  13. 13.
    Bolton, T. B. Electrical and mechanical activity of the longitudinal muscle of the anterior mesenteric artery of the domestic fowl. J. Physiol. 196: 283–292, 1968.PubMedGoogle Scholar
  14. 14.
    Bolton, T. B. The permeability change produced by acetylcholine in smooth muscle. In Drug Receptors. H. P. Rang, ed. MacMillan, London, 1973, pp 87–102.Google Scholar
  15. 15.
    Bolton, T. B. Action of acetylcholine on the smooth muscle membrane. In Smooth Muscle. E. E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds. University of Texas Press, Austin, 1981, pp 199–217.Google Scholar
  16. 16.
    Brachfeld, N., R. G. Monroe, and R. Gorlin. Effect of pericoronary denervation on coronary hemodynamics. Am. J. Physiol. 199: 174, 1960.PubMedGoogle Scholar
  17. 17.
    Brading, A. F. and P. Sneddon. Evidence for multiple sources of calcium for activation of the contractile mechanism of guinea-pig taenia coli on stimulation with carbachol. Br. J. Pharmac. 70: 229–240, 1980.Google Scholar
  18. 18.
    Brading, A. How do drugs initiate contraction in smooth muscles? TIPS 261–265, 1981.Google Scholar
  19. 19.
    Brodie, D. C., D. F. Bohr, and J. Smit. Dual contractile response of the aortic strip. Am. J. Physiol. 197: 241–246, 1959.PubMedGoogle Scholar
  20. 20.
    Brown, A. M. Motor innervation of the coronary arteries of the cat. J. Physiol. London 198: 311–328, 1968.PubMedGoogle Scholar
  21. 21.
    Burnstock, G. Structure of smooth muscle and its innervation. In Smooth Muscle. E. E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds. Edward Arnold, London, 1970, pp 1–70.Google Scholar
  22. 22.
    Burnstock, G. Cholinergic and purinergic regulation of blood vessels. In Handbook of Physiology, Section 2, The Cardiovascular System, Vol II, Vascular Smooth Muscle. D. F. Bohr, A. P. Somlyo, and H. V. Sparks, Jr., eds. American Physiol. Society, Bethesda, MD, 1980, pp 567–612.Google Scholar
  23. 23.
    Busija, D. W. and D. D. Heistad. Effects of cholinergic nerves on cerebral blood flow in cats. Circ. Res. 48: 62–69, 1981.PubMedGoogle Scholar
  24. 24.
    Campbell, G. Autonomic nerves supply to effector tissues. In Smooth Muscle. E. E. Bulbring, A. F. Brading, A. W. Jones, and T. Tomita, eds. Edward Arnold, London, 1970, pp 451–459.Google Scholar
  25. 25.
    Casteels, R. and G. Droogmans. Membrane potential and excitation—contraction coupling in smooth muscle. Fed. Proc. 41: 2879–2882, 1982.PubMedGoogle Scholar
  26. 26.
    Chand, N. and B. M. Altura. Inhibition of endothelial cell-dependent relaxations to acetylcholine and bradykinin by lipoxygenase inhibitors in canine isolated renal arteries. Microcirculation 1: 211–223, 1981a.Google Scholar
  27. 27.
    Chand, N. and B. M. Altura. Acetylcholine and bradykinin relax intrapulmonary arteries by acting on endothelial cells: role in lung vascular diseases. Science 213: 1376–1379, 1981b.PubMedGoogle Scholar
  28. 28.
    Chorobski, J. and W. Pennfield. Cerebral vasodilator nerves and their pathway from the medulla oblongata. Arch. Neurol. Psychiat. 28: 1257–1289, 1932.Google Scholar
  29. 29.
    Cobb, S. and J. E. Finesinger. Cerebral circulation. XIX. The vagal pathway of the vasodilator fibers. Arch. Neurol. Psychiat. 28: 1243–1256, 1932.Google Scholar
  30. 30.
    Creese, B. R. and M. A. Denborough. Sources of calcium for contraction of guinea-pig isolated tracheal smooth muscle. Clin. Exp. Pharmacol. Physiol. 8: 175–182, 1981.PubMedGoogle Scholar
  31. 31.
    D’Alecy, L. G. Adrenergic and cholinergic influence on CBF as determined with the venous outflow method. In Neurogenic Control of the Brain Circulation. C. Owman, L. Edvinsson, eds. Oxford, Pergamon Press, 1977, pp 327–330.Google Scholar
  32. 32.
    Daniel, E. E., G. S. Taylor, V. P. Daniel, and M. E. Holman. Can nonadrenergic inhibitory varicosities be identified by structure? Can. J. Physiol. Pharmacol. 55: 243–250, 1977.PubMedGoogle Scholar
  33. 33.
    de la Lande, I. S. Adrenergic mechanisms in the rabbit ear artery. Blood Vessels 12: 137–160, 1975.PubMedGoogle Scholar
  34. 34.
    De Mey, J. G. and P. M. Vanhoutte. Heterogenous behavior of the canine arterial and venous wall, importance of endothelium. Circ. Res. 51: 439–447, 1982.PubMedGoogle Scholar
  35. 35.
    Douglas, W. W. Stimulus-secretion coupling: The concept and clues from chromaffin and other cells. Br. J. Pharmac. 34: 451–474, 1968.Google Scholar
  36. 36.
    Dubey, M. P., E. Muscholl, and A. Pfeiffer. Muscarinic inhibition of potassium-induced noradrenaline release and its dependence on the calcium concentration. Naunyn—Schmiedeberg’s Arch. Pharmacol. 278: 179–194, 1975.Google Scholar
  37. 37.
    Duckles, S. P. Neurogenic dilator and constrictor responses of pial arteries in vitro: differences between dogs and sheep. Circ. Res. 44: 482–490, 1979.PubMedGoogle Scholar
  38. 38.
    Duckles, S. P. Evidence for a functional cholinergic innervation of cerebral arteries. J. Pharmacol. Exp. Ther. 217: 544–548, 1981.PubMedGoogle Scholar
  39. 39.
    Duckles, S. P. and C. D. Kennedy. Cerebral blood vessels: effects of exogenous acetylcholine and field stimulation on norepinephrine release. J. Pharmacol. Exp. Ther. 222: 562–565, 1982.PubMedGoogle Scholar
  40. 40.
    Duckles, S. P. and S. I. Said. Vasoactive intestinal polypeptide as a neurotransmitter in the cerebral circulation. Eur. J. Pharmacol. 78: 371–374, 1982.PubMedGoogle Scholar
  41. 41.
    Edvinsson, L., B. Falck, and C. Owman. Possibilities for a cholinergic action on smooth musculature and on sympathetic axons in brain vessels mediated by muscarinic and nicotinic receptors. J. Pharmacol. Exp. Ther. 200: 117–126, 1977.PubMedGoogle Scholar
  42. 42.
    Edvinsson, L., K. C. Nielsen, C. Owman, and B. L. Sporong. Cholinergic mechanisms in pial vessels. Histochemistry, electron microscopy and pharmacology. Z. Zellforsch. Mikroskop. Anat. 134: 311–325, 1972.Google Scholar
  43. 43.
    Edvinsson, L., J. Fahrenkrug, J. Hanko, C. Owman, F. Sundler, and R. Uddman. VIP (vasoactive intestinal polypeptide)-containing nerves of intracranial arteries in mammals. Cell Tissue Res. 208: 135–142, 1980.PubMedGoogle Scholar
  44. 44.
    Edvinsson, L., J. McCulloch, and R. Uddman. Substance P: immunohistochemical localization and effect upon cat pial arteries in vitro and in situ. J. Physiol. 318: 251–258, 1981.Google Scholar
  45. 45.
    Estrada, C. and D. N. Krause. Muscarinic cholinergic receptor sites in cerebral blood vessels. J. Pharmacol. Exp. Ther. 221: 85–90, 1982.PubMedGoogle Scholar
  46. 46.
    Evans, D. H. L., H. O. Schild and S. Thesleff. Effects of drugs on depolarized plain muscle. J. Physiol. London 143: 474–485, 1958.PubMedGoogle Scholar
  47. 47.
    Feigl, E. O. Parasympathetic control of coronary blood flow in dogs. Circ. Res. 25: 509–519, 1969.PubMedGoogle Scholar
  48. 48.
    Florence, V. M. and J. A. Bevan. Biochemical determinations of cholinergic innervation in cerebral arteries. Circ. Res. 45: 212–218, 1979.PubMedGoogle Scholar
  49. 49.
    Folkow, B. and E. Neil. Circulation. London, Oxford, 1971.Google Scholar
  50. 50.
    Forbes, H. S. and H. G. Wolff. Cerebral circulation. III. The vasomotor control of cerebral vessels. Arch. Neurol. Psychiat. 19: 1057–1980, 1928.Google Scholar
  51. 51.
    Fosbraey, P. and E. S. Johnson. Modulation by acetylcholine of the electrically-evoked release of [3H]-acetylcholine from the ileum of the guinea-pig. Br. J. Pharmacol. 69: 145–149, 1980.PubMedGoogle Scholar
  52. 52.
    Fozard, J. Cholinergic mechanism in adrenergic function. In Trends in Autonomic Pharmacology, Vol. I. S. Kalsner, ed. Urban and Schwarzenberg, Baltimore-Munich, 1979, pp 145–194.Google Scholar
  53. 53.
    Furchgott, R. F. Acetylcholine and blood vessel relaxation: Complications and clarifications. In Trends in Autonomic Pharmacology, Vol. 2. S. Kalsner, ed. Urban and Schwarzenberg, Baltimore, 1982, pp 497–510.Google Scholar
  54. 54.
    Furchgott, R. F. and J. V. Zawadzki. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 88: 375–376, 1980.Google Scholar
  55. 55.
    Furchgott, R. F., J. V. Zawadzki, and P. D. Cherry. Role of endothelium in the vasodilator response to acetylcholine. In Vasodilation. P. M. Vanhoutte and I. Leusen, eds. Raven Press, New York, 1981, pp 49–66.Google Scholar
  56. 56.
    Garland, C. J. and W. R. Keatinge. Constrictor actions of acetylcholine, 5-hydroxytryptamine and histamine on bovine coronary artery inner and outer muscle. J. Physiol. 327: 363–376, 1982.PubMedGoogle Scholar
  57. 57.
    Garrett, J. R. The innervation of salivary glands. II. The ultrastructure of nerves in normal glands of the cat. J. Ray. Microscop. Soc. 85: 149–162, 1966.Google Scholar
  58. 58.
    Garrett, J. R. and J. Holmberg. Effects of surgical denervations on the autonomic nerves in carotid glands of dogs. Z. Zellforsch. Mikroskop. Anat. 131: 451–462, 1972.Google Scholar
  59. 59.
    Godfrain, T. and A. Kaba. The role of calcium in the action of drugs in vascular smooth muscle. Arch. Int. Pharmacodyn. 196: 35–49, 1972.Google Scholar
  60. 60.
    Goyal, R. K. and B. W. Coble. Motility of the pharynx, esophagus and esophageal sphincters. In Physiology of the Gastrointestinal Tract. L. R. Johnson, ed. New York, Raven Press, 1981, pp 359–391.Google Scholar
  61. 61.
    Gregg, D. E. and L. C. Fisher. Blood supply to the heart. In Circulation, Handbook of Physiology. Vol. II. American Physiology Society, Washington, D.C., 1963, p 1548.Google Scholar
  62. 62.
    Gothert, M. Effects of presynaptic modulators on calcium-induced noradrenaline release from cardiac sympathetic nerves. Naunyn-Schmiedeberg’s Arch. Pharmacol. 300: 267–272, 1977.Google Scholar
  63. 63.
    Guzman, S. V., E. Swenson, and M. Jones. Inter-coronary reflex: demonstration by coronary angiography. Circ. Res. 10: 739, 1962.PubMedGoogle Scholar
  64. 64.
    Haeusler, G., H. Thonen, W. Haefely, and A. Huerliman. Electrical events in cardiac adrenergic nerves and noradrenaline release from the heart induced by acetylcholine and KC1. Naunyn-Schmiedeberg’s Arch. Pharmacol. 261: 389–411, 1968.Google Scholar
  65. 65.
    Harik, S. I., V. K. Sharma, J. R. Wetherbee, R. H. Warren, and S. P. Banerjee. Adrenergic and cholinergic receptors of cerebral microvessels. J. Cerebral Blood Flow Metabol. 1: 329–338, 1981.Google Scholar
  66. 66.
    Haubrich, D. R. Choline acetyltransferase and its inhibitors. In Biology of Cholinergic Function. Goldberg, A. M. and Hanin, I., eds. Raven Press, New York, 1976, pp 239–268.Google Scholar
  67. 67.
    Hong, S. L. and D. Deykin. Specificity of phospholipases in methylcholanthrene-transformed mouse fibroblasts activated by bradykinin, thrombin, serum, and ionphore A 23187. J. Biol. Chem. 254: 11463–11466, 1979.PubMedGoogle Scholar
  68. 68.
    Honig, C. R. and J. L. Frierson. Neurons intrinsic to arterioles initiate postcontraction vasodilation. Am. J. Physiol. 230: 493–507, 1976.PubMedGoogle Scholar
  69. 69.
    Hope, W., M. W. McCulloch, M. J. Rand, and D. F. Story. The effect of calcium on the interaction between acetylcholine and noradrenergic transmission in the rabbit ear artery. Clin. Exp. Pharmacol. Physiol. 5: 290, 1978.Google Scholar
  70. 70.
    Hudlicka, O. Muscle Blood Flow-Its Relation to Muscle Metabolism and Function. Amsterdam, Swets and Zeitlinger, 1973.Google Scholar
  71. 71.
    Hume, W. R. and J. G. Waterson. The innervation of the rabbit ear artery. Blood Vessels 15: 348–364, 1978.PubMedGoogle Scholar
  72. 72.
    Iwayama, T., J. B. Furness, and G. Burnstock. Dual adrenergic and cholinergic innervation of cerebral arteries of the rat. Circ. Res. 26: 635–646, 1970.PubMedGoogle Scholar
  73. 73.
    Jelliffe, R. W. Dilator and constrictor effects of acetylcholine on isolated rabbit aortic chains. J. Pharmacol. Exp. Ther. 135: 349–353, 1962.PubMedGoogle Scholar
  74. 74.
    Jope, R. S. High affinity choline transport and acetyl CoA production in brain and their roles in the regulation of acetylcholine synthesis. Brain Res. Rev. 1:313–344, 1979.Google Scholar
  75. 75.
    Kalsner, S. The effects of periarterial nerve activation on coronary vessel tone in an isolated and perfused slab of beef ventricle. Can. J. Physiol. Pharmacol. 57: 291–297, 1979.PubMedGoogle Scholar
  76. 76.
    Kennerly, D. A., T. J. Sullivan, and C. W. Parker. Activation of phospholipid metabolism during mediator release from stimulated rat mast cells. J. Immunol. 122: 152–159, 1979.PubMedGoogle Scholar
  77. 77.
    Kilbinger, H. Modulation by oxotremorine and atropine of a cetylcholine release evoked by electrical stimulation of the myenteric plexus of the guinea pig ileum. Naunyn-Schmiedeberg’s Arch. Pharmacol. 300: 145–151, 1977.Google Scholar
  78. 78.
    Kilbinger, H. and I. Wessler. Pre-and postsynaptic effects of muscarinic agonist in the guinea-pig ileum. Naunyn-Schmiedeberg’s Arch. Pharmacol. 314: 259–266, 1980.Google Scholar
  79. 79.
    Kitamura, K. and H. Kuriyama. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. J. Physiol. 293: 119–133, 1979.PubMedGoogle Scholar
  80. 80.
    Krishnamurty, V. S. R. and A. Grollman. The mechanism of contraction of rat aorta to various agonists. Arch, Int. Pharmacodyn. 220: 180–188, 1976.Google Scholar
  81. 81.
    Krnjevic, K. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54: 418–540, 1974.Google Scholar
  82. 82.
    Kuriyama, H. and H. Suzuki. The effects of acetylcholine on the membrane and contractile properties of smooth muscle cells of the rabbit superior mesenteric artery. Br. J. Pharmacol. 64: 493–501, 1978.PubMedGoogle Scholar
  83. 83.
    Kuriyama, H. and H. Suzuki. Adrenergic transmission in the guinea-pig mesenteric artery and their cholinergic modulation. J. Physiol. 317: 383–396, 1981.PubMedGoogle Scholar
  84. 84.
    Larsson, L. I., L. Edvinsson, J. Fahrenkrug, J. Hakanson, C. Owman, O. Schaffalitzky de Muckadell, and F. Sundler. Immunohistochemical localization of a vasodilator polypeptide (VIP) in cerebrovascular nerves. Brain Res. 113: 400–404, 1976.PubMedGoogle Scholar
  85. 85.
    Lee, T. J-F. Direct evidence against acetylcholine as the dilator transmitter in the cat cerebral artery. Eur. J. Pharmacol. 68: 393–394, 1980.PubMedGoogle Scholar
  86. 86.
    Lee, T. J-F. Ultrastructional distribution of vasodilator and constrictor nerves in the cat cerebral arteries. Circ. Res. 49: 971–979, 1981.PubMedGoogle Scholar
  87. 87.
    Lee, T. J-F. Is acetylcholine the dilator transmitter in cerebral blood vessels? A critical examination. J. Cereb. Blood Flow Metabol. 1 (Suppl. 1): S305–S306, 1981b.Google Scholar
  88. 88.
    Lee, T. J-F. Morphopharmacological study of cerebral vasodilator and constrictor nerves. In Neurogenic Control of Brain Circulation. ( D. D. Heistad and M. L. Marcus, eds. Amsterdam, Elsevier-North Holland, 1982.Google Scholar
  89. 89.
    Lee, T. J-F. Cholinergic mechanism in the large cat cerebral artery. Circ. Res. 50: 870–879, 1982.PubMedGoogle Scholar
  90. 90.
    Lee, T. J-F. Transmitter mechanisms in cerebral arteries: norepinephrine, acetylcholine, vasoactive intestinal polypeptide and substance P. In Springfield Blood Vessel Symposium. C. Su, T. J-F. Lee and W. H. Cline, Jr., eds. Springfield, IL, 1983, pp 38–43.Google Scholar
  91. 91.
    Lee, T. J-F., L. R. Kinkead, and S. Sarwinski. Norepinephrine and acetylcholine transmitter mechanisms in large cerebral arteries of the pig. J. Cereb. Blood Flow Metabol. 2: 439–450, 1982.Google Scholar
  92. 92.
    Lee, T. J-F., A. Saito, and I. Beresin. Vasoactive intestinal polypeptide-like substance: The potential cerebral vasodilator transmitter. Science 224: 888–901, 1984.Google Scholar
  93. 93.
    Lee, T.J-F. and S. Sarwinski. Transmitter roles of norepinephrine and acetylcholine in pig cerebral arteries. Fed. Proc. 41: 1233, 1982.Google Scholar
  94. 94.
    Lee, T. J-F., C. C. Chiueh, and M. Adams. Synaptic transmission of vasoconstrictor nerves in rabbit basilar artery. Eur. J. Pharmacol. 1: 55–70, 1980.Google Scholar
  95. 95.
    Lee, T. J-F., C. Su, and J. A. Bevan. Nonsympathetic dilator innervation of cat cerebral arteries. Experientia 31: 1424–1425, 1975.PubMedGoogle Scholar
  96. 96.
    Lee, T. J-F., W. R. Hume, C. Su, and J. A. Bevan. Neurogenic vasodilation of cat cerebral arteries. Circ. Res. 42: 535–542, 1978.PubMedGoogle Scholar
  97. 97.
    Leighton, H. J. and T. C. Westfall. The role of impulse flow, adrenergic agents and prostaglandins in the regulation of H-norepin-ephrine and dopamine beta-hydroxylase release from normal and decentralized guinea-pig vasa deferentia. Fed. Proc. 35: 406, 1976.Google Scholar
  98. 98.
    Linnik, M. D. and T. J-F. Lee. Electrical nerve stimulation-induced vasodilation is not mediated by acetylcholine. Pharmacologist 25: 269, 1983.Google Scholar
  99. 99.
    Leventer, S. M., P. P. Rowell, and M. J. Clark. The effect of choline acetyltransferase inhibition on acetylcholine synthesis and release in term human placenta. J. Pharmacol. Exp. Ther. 222: 301–305, 1982.PubMedGoogle Scholar
  100. 100.
    Li, C. K. and F. Mitchelson. The selective automuscarinic action of stercuronium. Br. J. Pharmacol. 70: 313–321, 1980.PubMedGoogle Scholar
  101. 101.
    Lundberg, J. M. Evidence for coexistence of vasoactive intestinal polypeptide (VIP) and acetylcholine in neurons of cat exocrine glands-morphological, biochemical and functional studies. Acta Physiol. Scand. Suppl. 496, 1981.Google Scholar
  102. 102.
    Mayer, S. E. Drugs acting at synaptic and neuroeffector junctional sites. Ch4 neurohumoral transmission and the autonomic nervous system. In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 6th Ed. A. G. Gilman, L. S. Goodman and A. Gilman, eds. New York, MacMillan Publishing Co., 1980, pp 56–90.Google Scholar
  103. 103.
    McCalden, T. A. and I. C. Roddie. Excitatory cholinergic fibers to longitudinal smooth muscle in bovine mesenteric veins. Ir. J. Med. Sci. 140: 48, 1971.Google Scholar
  104. 104.
    McConnell, J. G. and I. C. Roddie. A comparison of the behavior of longitudinal and circular smooth muscle in bovine mesenteric vein. J. Physiol. 207: 82P–83P, 1970.PubMedGoogle Scholar
  105. 105.
    Muscholl, E., H. Ritzel, and K. Rossler. Presynaptic muscarinic control of neuronal noradrenaline release. In Symposium on Presynaptic Receptors. S. Z. Langer, ed. Pergamon, Oxford, New York, 1979, pp 287–291.Google Scholar
  106. 106.
    Myers, H. A., E. A. Schenk, and C. R. Honig. Ganglion cells in arterioles of skeletal muscle: role in sympathetic vasodilation. Am. J. Physiol. 229: 126–138, 1975.PubMedGoogle Scholar
  107. 107.
    Narita, S. and M. Watanabe. Response of isolated rat iris dilator to adrenergic and cholinergic agents and electrical stimulation. Life Sci. 30: 1211–1218, 1982.PubMedGoogle Scholar
  108. 108.
    Owman, C., L. Edvinsson, and K. C. Nielsen. Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels 11: 2–31, 1974.PubMedGoogle Scholar
  109. 109.
    Papka, R. E., J. B. Furness, N. G. Della, and M. Costa. Depletion by capsaicin of substance P-immunoreactivity and acetylcholinesterase activity from nerve fibers in the guinea-pig heart. Neuroscience Letter 27: 47–53, 1981.Google Scholar
  110. 110.
    Peroutka, S. J., M. A. Moskowitz, J. F. Reinhard, and S. H. Snyder. Neurotransmitter receptor binding in bovine cerebral microvessels. Science 208: 610–612, 1980.PubMedGoogle Scholar
  111. 111.
    Pickett, W. C., R. L. Jesse, and P. Cohen. Initiation of phospholipase A2 activity in human platelets by the calcium ionophore A23187. Biochem. Biophys. Acta 486: 209–213, 1977.Google Scholar
  112. 112.
    Poulsen, J. H. and J. A. Williams. Effect of calcium ionophore A23187 on pancreatic aciner cell membrane potentials and amylase release. J. Physiol. London 264: 323–339, 1977.PubMedGoogle Scholar
  113. 113.
    Pressman, B. C. Biological applications of ionophores. Ann. Rev. Biochem. 45: 501–530, 1976.PubMedGoogle Scholar
  114. 114.
    Richter, U., H. Pilgrim, E. Teuscher, and E. Hildegard. Untersuchungen in-vitro-Kultivierter Zellen glattmuskularer Organe. Part 4: Das Kontrak-Gionsuerhalten in-vitro-Kultivierter Zellen der Aorta und der Harnblase der Ratte. Pharmazie. 31: 323–326, 1976.Google Scholar
  115. 115.
    Salvaterra, P. M., D. A. Matthews, and R. Foders. Quantitative relationships of five putative neurotransmitters receptor sites in rat hippocampal formation. J. Neurochem. 35: 1253–1257, 1980.PubMedGoogle Scholar
  116. 116.
    Sastry, B. V. R., J. Olubadewo, R. D. Harrison, and D.E. Schmidt. Human placental cholinergic system: occurrence, distribution, and variation with gestational age of acetylcholine in human placenta. Biochem. Pharmacol. 25: 425–431, 1976.Google Scholar
  117. 117.
    Sawynok, J. and K. Jhamandas. Muscarinic feedback inhibition of acetylcholine release from the myenteric plexus of guinea-pig ileum and its status after chronic exposure to morphine. Can. J. Physiol. Pharmacol. 55: 909–916, 1977.PubMedGoogle Scholar
  118. 118.
    Scremin, O. U., R. R. Sonnenschein, and E. H. Rubinstein. The role of cranial nerves in cholinergic cerebral vasodilation. Physiologist (abstr.) 22: 113, 1979.Google Scholar
  119. 119.
    Shepherd, J. T., R. R. Lorenz, G. M. Tyce, and P. M. Vanhoutte. Acetylcholine-inhibition of transmitter release from adrenergic nerve terminals mediated by muscarinic receptors. Fed. Proc. 37: 191–194, 1978.PubMedGoogle Scholar
  120. 120.
    Singer, H. A. and M. J. Peach. Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4(Suppl. II):II-19-II-25, 1982.PubMedGoogle Scholar
  121. 121.
    Somlyo, A. P. and A. V. Somlyo. Vascular smooth muscle. II. Pharmacology of normal and hypertensive vessels. Pharmacol. Rev. 22: 249–353, 1970.PubMedGoogle Scholar
  122. 122.
    Steisland, O. S., F. Furchgott, and S. M. Kirpekar. Biphasic vasoconstriction of the rabbit ear artery. Circ. Res. 32: 49–58, 1973.Google Scholar
  123. 123.
    Stjernschantz, J., A. Alm, and A. Bill. Effects of intracranial oculomotor nerve stimulation on ocular blood flow in rabbits. Modification by indomethacin. Exp. Eye Res. 23: 461–469, 1976.PubMedGoogle Scholar
  124. 124.
    Su, C., J. A. Bevan, and R. C. Ursillo. Electrical quiescence of pulmonary artery smooth muscle during sympathomimeter stimulation. Circ. Res. 15: 20–27, 1964.Google Scholar
  125. 125.
    Szerb, J. C. Effect of low calcium and oxotremorine on the kinetics of the evoked release of [3H]-acetylcholine from guinea-pig mynteric plexus: comparison with morphine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 311: 119–127, 1980.Google Scholar
  126. 126.
    Taylor, P. Cholinergic agonists. In Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 6th Ed. A. G. Gilman, L. S. Goodman and A. Gilman, eds. New York, MacMillan Publishing Co., Inc., 1980, pp 91–99.Google Scholar
  127. 127.
    Toda, N. Relaxant responses to transmural nerve stimulation and nicotine of dog and monkey cerebral arteries. Am. J. Physiol. 243: H145–H153, 1982.PubMedGoogle Scholar
  128. 128.
    Uvnas, B. Cholinergic vasodilator nerves. Fed. Proc. 25: 1613–1622, 1966.Google Scholar
  129. 129.
    VanBreemen, C. Blockade of membrane calcium fluxes by La in relation to vascular smooth muscle contractility. Arch. Int. Physiol. 77: 710–716, 1969.Google Scholar
  130. 130.
    Vanhoutte, P.M., T. J. Verbeuren, and R. C. Webb. Local modulation of adrenergic neuroeffector interaction in the blood vessel wall. Physiol. Rev. 61: 151–247, 1981a.PubMedGoogle Scholar
  131. 131.
    Vanhoutte, P. M., M. Collis, W. J. Janssen, and T. J. Verbeuren. Calcium dependence of prejunctional inhibitory effects of adenosine and acetylcholine on adrenergic neurotransmission in canine saphenous veins. Europ. J. Pharmacol. 72: 189–198, 1981b.Google Scholar
  132. 132.
    Vanhoutte, P. M. and T. J. Verbeuren. Inhibition by acetylcholine of 3H-norepinephrine release in cutaneous veins after alpha-adrenergic blockade. Arch. Int. Pharmacodyn. Ther. 221: 160–162, 1976a.Google Scholar
  133. 133.
    Vanhoutte, P. M. and T. J. Verbeuren. Inhibition by acetylcholine of the norepinephrine release evoked by potassium in canine saphenous veins. Circ. Res. 39: 263–269, 1976b.Google Scholar
  134. 134.
    Vasquez, J. and M. J. Purves. Studies on the dilator pathway to cerebral blood vessels. In Neurogenic Control of the Brain Circulation. C. Owman and L. Edvinsson, eds. Oxford, Plenum Press, 1977, pp 59–73.Google Scholar
  135. 135.
    Verbeuren, F. J. and P. M. Vanhoutte. Acetylcholine inhibits potassium evoked release of 3H-norepinephrine in different blood vessels of the dog. Arch. Int. Pharmacodyn. Ther. 221: 347–350, 1976.PubMedGoogle Scholar
  136. 136.
    Watkins, R. W. and W. F. Davidson. Effect of acetylcholine on phasic and tonic components of vascular smooth muscle contraction. Arch. Int. Pharmacodyn. 243: 217–227, 1980a.PubMedGoogle Scholar
  137. 137.
    Watkins, R. W. and W. F. Davidson. Effects of competitive antagonists on phasic and tonic components of vascular smooth muscle contractions. Arch. Int. Pharmacodyn. 244: 200–210, 1980.PubMedGoogle Scholar
  138. 138.
    Westfall, T. C. Local regulation of adrenergic neurotransmission. Physiol. Rev. 57: 659–728, 1977.PubMedGoogle Scholar
  139. 139.
    Wood, J. D. Physiology of the enteric nervous system. In Physiology of the Gastrointestinal Tract. Vol. 1. L. R. Johnson, J. Christensen, M. I. Grossman, E. D. Jacobson and S. G. Schultz, eds. Raven Press, New York, 1981, pp 1–37.Google Scholar
  140. 140.
    Yamamura, H. I. and S. H. Snyder. Muscarinic cholinergic binding in rat brain. Proc. Nat. Acad. Sci., USA 71: 1725–1729, 1974.Google Scholar
  141. 141.
    Zawadzki, J. V., P. D. Cherry, and R. F. Furchgott. Comparison of endothelium-dependent relaxation of rabbit aorta by A23187 and by acetylcholine. Pharmacologist 22:271, 1980.Google Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • Tony J-F. Lee

There are no affiliations available

Personalised recommendations