Advertisement

On Non-Invertible Boundary Value Problems

  • R. M. M. Mattheij
  • F. R. de Hoog
Part of the Progress in Scientific Computing book series (PSC, volume 5)

Abstract

For non-invertible boundary value problems, i.e. where the boundary conditions as such do not determine the solution uniquely, the usual concepts of condition numbers and stability do not apply. Such problems typically arise when the interval is semi-infinite. If one assumes that the desired solution is bounded the boundary conditions are sufficient to give a unique solution (as an element of the bounded solutions manifold). Another type of problems are eigenvalue problems, where both the dynamics and the boundary conditions are homogeneous. We shall introduce sub-condition numbers that indicate the sensitivity of the problem with respect to perturbations of a relevant subproblem. We also discuss a numerical method that computes such sub-condition number to demonstrate its applicability. Finally we give a number of numerical examples to illustrate both the theory and the computational method.

Keywords

Eigenvalue Problem Fundamental Solution Unstable Manifold Multiple Shooting Stable Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Bayliss, A double shooting scheme for certain unstable and singular boundary value problems, Math. Comp. 32 (1978), 61–71.MathSciNetMATHCrossRefGoogle Scholar
  2. [2]
    C. de Boor, F. de Hoog, H.B. de Keller, The stability of one-step schemes for first-order two-point boundary value problems, SIAM J. Numer. Anal. 20 (1983), 11391146.Google Scholar
  3. [3]
    w.A. Coppel, Dichotomies in Stability Theory, LNM 629, Springer-Verlag Berlin (1978).Google Scholar
  4. [4]
    R. England, A program for the solution of boundary value problems for systems of ordinary differential equations, Culham Laboratory Report, PDN 3 /73, 1976.Google Scholar
  5. [5]
    G.H. Golub, C.F. van Loan, Matrix computations. The John Hopkins University Press, Baltimore (1983).MATHGoogle Scholar
  6. [6]
    F.R. de Hoog, R.M.M. Mattheij, On dichotomy and well-conditioning in BVP, report 8356, Katholieke Universiteit Nijmegen (1983).Google Scholar
  7. [7]
    F.R. de Hoog, R.M.M. Mattheij, The Role of Conditioning in Shooting Techniques, these nroreedings.Google Scholar
  8. [8]
    F.R. de Hoog, R. Weiss, An Approximation Theory for Boundary Value Problems on Infinite Intervals, Computing 24 (1980), 227–239.MathSciNetMATHCrossRefGoogle Scholar
  9. [9]
    F.R. de Hoog, R. Weiss, On the boundary value problem for systems of ordinary differential equations with a singularity of the second kind, SIAM J. Math. Anal. 11 (1980), 41–60.Google Scholar
  10. [10]
    H.O. Kreiss, Difference Approximtations for Boundary and Eigenvalue Problems for Ordinary Differential Equations, Math. Comp. 26 (1972), 605–624.MathSciNetMATHCrossRefGoogle Scholar
  11. [11]
    W.F. Langford, A shooting algorithm for the best least squares solution of two-point boundary value problems, SIAM J. Numer. Anal. 14 (1977), 527–542.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    M. Lentini, H.B. Keller, Boundary value problems on semi-infinite intervals and their numerical solution, SIAM J. Numer. Anal. 17 f1980 ), 577–604.Google Scholar
  13. [13]
    P. Markowich, A theory for the approximation of solutions of boundary value problems on infinite intervals, SIAM J. Math. Anal. 13 (1982), 484–513.MathSciNetMATHGoogle Scholar
  14. [14]
    J.L. Massara, J.J. Schäffer, Linear differential equations and function spaces, Academic Press, New York (1966).Google Scholar
  15. [15]
    R.M.M. Mattheij, On approximating smooth solutions of linear singularly perturbed ODE, in:Numerical Analysis of Singular Perturbation Problems (ed. F.W. Hemker, J.J.H. Miller ), Academic Press, London (1979), 457–465.Google Scholar
  16. [16]
    R.M.M. Mattheij, Characterizations of dominant and dominated solutions of linear recursions, Numer. Math. 35 (1980), 421–442.MathSciNetMATHGoogle Scholar
  17. [17]
    R.M.M. Mattheij, Estimates for the errors in the solution of linear boundary value problems due to perturbations, Computing 27 (1981), 299–318.MathSciNetMATHCrossRefGoogle Scholar
  18. [18]
    R.M.M. Mattheij, Stable computation of solutions of unstable linear initial value recursions, BIT 22 (1982), 79–93.MathSciNetMATHCrossRefGoogle Scholar
  19. [19]
    R.M.M. Mattheij, The conditioning of linear boundary value problems, SIAM J. Numer. Anal. 19 (1982), 963978.Google Scholar
  20. [20]
    R.M.M. Mattheij, Estimates for the fundamental solutions of discrete BVP, J. Math. Anal. Appl. 101 (1984) 444–464.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    R.M.M. Mattheij, G.W.M. Staarink, An efficient algorithm for solving general linear two point BVP, SIAM J. Stat. Sci. Comp. 5 (1984), No 4.Google Scholar
  22. [22]
    T.N. Robertson, The Linear Two-point Boundary Value Problem on an Infinite Interval, Math. Comp. 25 (1971), 475–481.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    R.D. Russel, A Unified View of the Numerical Solution of BVPs, these proceedings.Google Scholar
  24. [24]
    G. Söderlind, R.M.M. Mattheij, Stability and asymptotic estimates in nonautonomous linear differential systems, SIAM J. Math. Anal. 16 (1985), No 1.Google Scholar
  25. [25]
    G.W. Stewart, On the perturbation of pseudo-inverses, projections and linear least squares problems, SIAM Review 19 (1977), 634–662.MathSciNetMATHCrossRefGoogle Scholar
  26. [26]
    J.G. Verwer, A.O.H. Axelsson, Boundary value techniques cr initial value problems in ordinary differential equations, manuscript (1982).Google Scholar

Copyright information

© Birkhäuser Boston, Inc. 1985

Authors and Affiliations

  • R. M. M. Mattheij
    • 1
  • F. R. de Hoog
    • 2
  1. 1.Mathematisch InstituutKatholieke UniversiteitNijmegenThe Netherlands
  2. 2.Division of Mathematics & StatisticsCSIROCanberraAustralia

Personalised recommendations