Dynamics and Availability of Major Nutrients in Soils

  • Konrad Mengel
Part of the Advances in Soil Science book series (SOIL, volume 2)


In his book The Organic Chemistry and Its Application on Agriculture and Physiology Liebig (1841) stated: “Als Prinzip des Ackerbaues muβ angesehen werden, daβ der Boden in vollem Maβe wieder erhalten muβ, was ihm genommen wird” (it must be borne in mind that as a principle of arable farming, what is taken from the soil must be returned to it in full measure). This was the theoretical basis of a development with far-reaching consequences. According to this principle, fertility of many soils could be maintained or even restored. The efficiency of crop production was tremendously improved, as evidenced by the yield attained per unit of land. At the time Liebig began his studies in Germany 1 ha of cultivated land produced food for about one person. Today’s figure is 4.5 people. During this development, fertilizer use also increased considerably. Future crop production, whether in countries with a highly developed or less developed agriculture, will be based on the same principle as that stated by Liebig: maintainance and restoration of soil fertility by substituting the plant nutrients exported with crops from the field or lost by other processes by means of fertilizer application. Besides this, as already has been done in the past, new cultivars should be bred with a higher nutrient efficiency (Mengel, 1983).


Soil Solution Root Hair Root Surface Major Nutrient Deep Soil Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilars, A., and A. van Diest. 1981. Rock phosphate mobilization induced by the alkaline uptake pattern of legumes utilizing symbiotically fixed nitrogen. Plant and Soil 61: 27–42.Google Scholar
  2. Aichberger, K. 1982. Veranderungen des pflanzenverfügbaren Bodenstickstoff-gehaltes (Nmin) im Jahresablauf. Die Bodenkultur 33: 277–288.Google Scholar
  3. Allison, F.E., M. Kefauver, and E.M. Roller. 1953. Ammonium fixation in soils. Soil Sci. Soc. Am. Proc. 17: 107–110.Google Scholar
  4. Amberger, A., and R. Gutser. 1976. Aussagekraft von Bodenuntersuchungs¬methoden in langjahrigen Feldversuchen mit verschiedenen P-Formen. Landw. Forsch. SH 33 (1): 18–38.Google Scholar
  5. Amberger, A., and K. Vilsmeier. 1979. Hemmung der Nitrifikation des Giillestick¬stoffs durch Dicyandiamid. Z. Acker- Pflanzenbau 148: 239–246.Google Scholar
  6. Amberger, A., R. Gutser, and K. Teicher. 1974. Kaliumernahrung der Pflanzen and Kaliumdynamik auf Kalium-fixierendem Boden. Plant and Soil 40: 269–284.Google Scholar
  7. Amberger, A., K. Vilsmeier, and K Guster. 1982. Stickstofffraktionen ver-schiedener Gullen and deren Wirkung im Pflanzenversuch. Z. Pflanzenern. Bodenk. 145: 325–336.Google Scholar
  8. Amer, F., D. R. Bouldin, C.A. Black, and F. R. Duke. 1955. Characterization of soil phosphorus by anion exchange resin adsorption and 32P-equilibration. Plant and Soil 6: 391–408.Google Scholar
  9. Andrew, C.S., and A.D. Johnson. 1976. Effect of calcium, pH and nitrogen on the growth and chemical composition of some tropical and temperate pasture legumes. II. Chemical composition (calcium, nitrogen, potassium, magnesium, sodium and phosphorus). Austr. J. Agr. Res. 27: 625–636.Google Scholar
  10. Antoniw, L.D., and J.I. Sprent. 1978. Primary metabolites of Phaseolus vulgaris nodules. Phytochemistry 17: 675–678.Google Scholar
  11. Araragi, M., and B. Tangcham. 1979. Effect of rice straw on the composition of volatile soil gas and microflora in the tropical paddy field. Soil Sci. Plant Nutr. 25 (3): 283–295.Google Scholar
  12. Arifin, H.F., and K.H. Tan. 1973. Potassium fixation and reconstitution of micaceous structures in soils. Soil Sci. 116: 31–35.Google Scholar
  13. Arnon, I. 1969. Transition from extensive to intensive agriculture in Israel with fertilizers. In: Transition from extensive to intensive agriculture with fertilizers. pp. 13–24. Int. Potash Inst., Berne.Google Scholar
  14. Bachthaler, G., and A. Wagner. 1973. Ergebnisse langjahriger Vergleichsversuche Stroh-Griindiingung und Strohverbrennung unter verschiedenen Standortbe- dingungen. Bayer. Ldw. Jahrb. 50: 436–461.Google Scholar
  15. Barber, S.A. 1962. A diffusion mass flow concept of soil nutrient availability. Soil Set 93: 39–49.Google Scholar
  16. Barber, S.A. 1974. Influence of the plant root on ion movement in soils. In: E.W. Carson (ed.), The plant root and its environment, pp. 525–564. University Press of Virginia, Charlottesville.Google Scholar
  17. Barber, S. A., and J.H. Cushman. 1981. Nitrogen uptake model of agronomic crops. In: J.K. Iscander (ed.), Modelling waste water rennovation land treatment, pp. 382–409. Wiley Interscience, New York.Google Scholar
  18. Barber, S.A., J.M. Walker, and E.H. Vasey. 1963. Mechanisms for the movement of plant nutrients from the soil and fertilizer to the plant root. Agr. Food Chem. 11: 204–207.Google Scholar
  19. Barekzai, A. 1984. Alterung von wasserloslichem Phosphat—untersucht in Gefap- und Modellversuchen. Ph. D. Thesis, FB 19, Justus Liebig-University Giessen.Google Scholar
  20. Barrow, N. J., and T.C. Shaw. 1975. The slow reactions between soil and anions. 5. Effects of period of prior contact on the desorption of phosphate from soils. Soil Sci. 119: 311–320.Google Scholar
  21. Bauer, W.D. 1981. Infection of legumes by Rhizobia. Ann. Rev. Plant Physiol. 32: 407–449.Google Scholar
  22. Beck, T. 1983. Die N-Mineralisierung von Boden im Laborbrutversuch. Z. Pflanzenern. Bodenk. 146: 243–252.Google Scholar
  23. Beckett, P.H.T. 1964. Studies on soil potassium. II. The “immediate” Q/I relations of labile potassium in the soil. J. Soil Sci. 15: 9–23.Google Scholar
  24. Berthelin, J., and C. Leyval. 1982. Ability of symbiotic and non-symbiotic rhizospheric microflora of maize (Zea mays) to weather micas and to promote plant growth and plant nutrition. Plant and Soil 68: 369–377.Google Scholar
  25. Bhat, K.K.S., and P.H. Nye. 1974. Diffusion of phosphate to plant roots in soil. III. Depletion around onion roots without root hairs. Plant and Soil 41: 383–394.Google Scholar
  26. Biederbeck, V.O., C.A. Campbell, K.E. Bowren, and R.N. Mclver. 1980. Effect of burning cereal straw on soil properties and grain yields in Saskatchewan. Soil Sci. Soc. Am. J. 44: 103–111.Google Scholar
  27. Blair, GJ., and O.W. Boland. 1978. The release of phosphorus from plant material added to soil. Austr. J. Soil Res. 16: 101–111.Google Scholar
  28. Bole, J.B. 1973. Influence of root hairs in supplying soil phosphorus to wheat. Can. J. Soil Sci. 53: 169–175.Google Scholar
  29. Bolt, G.H., M.E. Sumner, and A. Kamphorst. 1963. A study of the equilibria between the categories of potassium in an illite soil. Soil Sci. Soc. Am. Proc. 27: 294–299.Google Scholar
  30. Borst, N.P., and C. Mulder. 1971. Stikstofgehalte, Stikstofbemesting en opbrengst van wintertarwe op zeezand-, kleien zavelgronden in Nord-Holland. Betrisontwikkeling 2: 31–36.Google Scholar
  31. Bowden, J.W., A.M. Posner, and J.P. Quirk. 1977. Ionic adsorption on variable change mineral surfaces. Theoretical-charge development and titration curves. Austr. J. Soil Res. 15: 121–136.Google Scholar
  32. Breisch, H., A. Guckert, and O. Reisinger. 1975. Etude au microscope electronique de la zone apicale des racines des mais. Soc. Bot. Fr. Coll. Rhizosphere 122: 55–60.Google Scholar
  33. Bremner, J.M. 1959. Determination of fixed ammonium in soil. J. Agr. Sci. 52: 147–160.Google Scholar
  34. Bremner, J.M., and D.W. Nelson. 1968. Chemical decomposition of nitrite in soils. 9 th Int. Congr. Soil Sci. Trans. (Adelaide) 2: 495–503.Google Scholar
  35. Breteler, H., and A.L. Smith. 1974. Effect of ammonium nutrition on uptake and metabolism of nitrate in wheat. Neth. J. Agr. Sci. 22: 73–81.Google Scholar
  36. Broadbent, F.E., and T. Nakashima. 1971. Effect of added salt on nitrogen mineralization in three California soils. Soil Sci. Soc. Am. Proc. 35: 457–460.Google Scholar
  37. Bronner, H. 1974. Der leichtlosliche Stickstoff im Boden im Zusammenhang mit Kenndaten der Rubenentwicklung. Landw. Forsch. SH 30 (11): 39–44.Google Scholar
  38. Bronner, H., and W. Bachler. 1979. Der hydrolysierbare Stickstoff als Hilfsmittel fur die Schatzung des Stickstoffnachlieferungsvermogens von Zuckerruben¬boden. Landw. Forsch. 32: 255–261.Google Scholar
  39. Buresh, R.J., M.E. Casselman, and W.H. Patrick, Jr. 1980. Nitrogen fixation in flooded soil systems, a review. Adv. Agron. 33: 149–192.Google Scholar
  40. Burkart, N., and A. Amberger. 1978. Einflup der Kaliumdungung auf die Verfiigbarkeit des Kaliums in K-fixierenden Boden im Verlaufe der Vegeta¬tionszeit. Z. Pflanzenern. Bodenk. 141: 167–179.Google Scholar
  41. Burnham, C.P., and D. Lopez-Hernandez. 1982. Phosphate retention in different soil taxonomic classes. Soil Sci. 134: 376–380.Google Scholar
  42. Campbell, C.A. 1978. Soil organic carbon, nitrogen and fertility. In: M. Schnitzer and S.U. Khan (eds.), Developments in soil science 8: soil organic matter. pp. 174–271. Elsevier, Amsterdam.Google Scholar
  43. Chin, W.-T., and W. Kroontje. 1963. Urea hydrolysis and subsequent loss of ammonia. Soil Sci. Soc. Am. Proc. 27: 316–318.Google Scholar
  44. Claassen, N., and S.A. Barber. 1976. Simulation model for nutrient uptake from soil by growing plant root system. Agron. J. 68: 961–964.Google Scholar
  45. Claassen, N., and A. Jungk. 1982. Kaliumdynamik im wurzelnahen Boden in Beziehung zur Kaliumaufnahme von Maispflanzen. Z. Pflanzenern. Bodenk. 145: 513–525.Google Scholar
  46. Claassen, N., K. Hendriks, and A. Jungk. 1981. Rubidium-Verarmung des wurzelnahen Bodens durch Maispflanzen. Z. Pflanzenern. Bodenk. 144: 533–545.Google Scholar
  47. Coic, Y., C. Lessaint, and F. Le Roux. 1962. Effects de lat nature ammoniacale ou nitrique de l’alimentation azotee et du changement de la nature de cette alimentation sur le metabolisme des anions et cations chez la tomate. Ann. Physiol. Veg. 4: 117–125.Google Scholar
  48. Dalai, R.C. 1977a. Fixed ammonium and carbon-nitrogen ratios of some Trinidad soils. Soil ScL 124: 323–327.Google Scholar
  49. Dalai, R.C. 1977b. Soil organic phosphorus. Adv. Agron. 29: 83–117.Google Scholar
  50. Daly, G.T. 1966. Nitrogen fixation by nodulated Alnus rugosa. Can. J. Bot. 44: 1607–1621.Google Scholar
  51. Dejaegere, R., and L. Neirinckx. 1978. Proton extrusion and ion uptake: some characteristics of the phenomenon in barley seedlings. Z. Pflanzenphysiol. 89: 129–140.Google Scholar
  52. Delwiche, C.C. 1983. Cycling of elements in the biosphere. In: A. Lauchli and R.L. Bieleski (eds.), Inorganic plant nutrition. Encycl. plant physiol. New Series, Vol. 15. pp. 212–238. Springer-Verlag, New York.Google Scholar
  53. Diez, T., and U. Hege. 1980. Stickstoffdiingung des Weizens nach Bodenunter- suchung (Nmin) in Abhangigkeit von den Standortverhaltnissen. Bayer. Ldw. Jahrb. 57: 944–951.Google Scholar
  54. Dijkshoorn, W. 1957. A note on the cation-anion relationships in perennial ryegrass. Neth. J. Agr. Sci. 5: 81–85.Google Scholar
  55. Dobereiner, J., J.M. Day, and P.J. Dart. 1972. Nitrogenous activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. J. Gen. Microbiol. 71: 103–116.Google Scholar
  56. Drew, M.C., P.H. Nye, and L.V. Vaidyanathan. 1969. The supply of nutrient ions by diffusion to plant roots in soil. I. Absorption of potassium by cylindrical roots of onion and leek. Plant and Soil 30: 252–270.Google Scholar
  57. During, C., and D.M. Duganzich. 1979. Simple empirical intensity and buffering capacity measurements to predict potassium uptake by white clover. Plant and Soil 51: 167–176.Google Scholar
  58. Ehlers, W., H. Gebhardt, and B. Meyer. 1968. Untersuchungen iiber die positions- spezifische Bindung des Kaliums an Illit, Kaolinit, Montmorillonit und Humus. Z. Pflanzenern. Bodenk. 119: 173–186.Google Scholar
  59. Ellenberg, H. 1964. Stickstoff als Standortfaktor. Ber. Dtsch. Bot. Ges. 77: 82–92.Google Scholar
  60. Farquhar, G.D., P.M. Firth, R. Wetselaar, and B. Weir. 1980. On the gaseous exchange of ammonia between leaves and the environment: determination of the ammonia compensation point. Plant Physiol. 66: 710–714.PubMedGoogle Scholar
  61. Feigenbaum, S., and K. Mengel. 1979. The effect of reduced light intensity and sub-optimal potassium supply on N2 fixation and N turnover in Rhizobium infected lucerne. Physiol. Plant. 45: 245–249.Google Scholar
  62. Fox, R.H., and W.P. Piekielek. 1978. A rapid method for estimating the nitrogen-supplying capability of a soil. Soil Sci. Soc. Am. J. 42: 751–753.Google Scholar
  63. Fuhr, F., and J.M. Bremner. 1964. Untersuchungen zur Fixierung des Nitritstick¬stoffs durch die organische Masse des Bodens. Landw. Forsch. SH 18: 43–51.Google Scholar
  64. Ganry, F., G. Guiraud, and Y. Dommergues. 1978. Effect of straw incorporation on the yield and nitrogen balance in the sandy soil-pearl millet cropping system of Senegal. Plant and Soil 50: 647–662.Google Scholar
  65. Gaskell, J.F., A.M. Blackmer, and J.M. Bremner. 1981. Comparison of effects of nitrate, nitrite, and nitric oxide on reduction of nitrous oxide to dinitrogen by soil microorganisms. Soil Sci. Soc. Am. J. 45: 1124–1127.Google Scholar
  66. Graff, O., and H. Kuhn. 1977. Einflup des Regenwurms Lumbricus terrestris L. auf die Ertrags- and Nahrstoffwirkung einer Strohdungung. Landw. Forsch. 30: 86–93.Google Scholar
  67. Graham, E. K, and R. L. Fox. 1971. Tropical soil potassium as related to labile pool and calcium exchange equilibria. Soil Sci. 111: 318–322.Google Scholar
  68. Graham, J.H., R.T. Leonard, and J.A. Menge. 1981. Membrane mediated decrease in root exudation responsible for phosphorus inhibition of vesicular- arbuscular mycorrhiza formation. Plant Physiol. 68: 548–552.PubMedGoogle Scholar
  69. Grimme, H. 1982. K desorption in ap external electrical field as related to clay content. Plant and Soil 64: 49–54.Google Scholar
  70. Grimme, H., K. Nemeth, and L.C. von Braunschweig. 1971. Beziehungen zwischen dem Verhalten des Kaliums im Boden and der K-Ernahrung der Pflanze. Landw. Forsch. SH 26 (1): 165–176.Google Scholar
  71. Guckert, A., H. Breisch, and O. Reisenauer. 1975. Etude au microscope electron¬ique des relations mucigel-argile-microorganismes. Soil Biol. Biochem. 7: 241–250.Google Scholar
  72. Guo, P.-C., J. Bohring, and H.W. Scherer. 1983. Verhalten von Diinger-NH4+ in Boden unterschiedlicher tonmineralischer Zusammensetzung. Z. Pflanzenern. Bodenk. 146: 752–759.Google Scholar
  73. Gutser, R., and A. Amberger. 1976. Aussagekraft einiger Bodenuntersuchungs¬methoden fur Phosphat in ein- and mehrjahrigen Gefaoversuchen. Landw. Forsch. SH 33(1):39–51, Kongrepband.Google Scholar
  74. Gutser, R, and K. Teicher. 1976. Veranderungen des losliche Stickstoffes einer Ackerbraunerde unter Winterweizen im Jahresverlauf. Bayer. Ldw. Jahrb. 53: 215–226.Google Scholar
  75. Hagemann, O., and S. Muller. 1976 Untersuchungen fiber den Einflup des pH-Wertes auf die Ausnutzung von Diingerphosphaten and die Mobilisierung von Bodenphosphaten. Arch. Acker- Pflanzenbau Bodenk. 20: 805–815.Google Scholar
  76. Haider, K., and Farooq-e-Azam. 1983. Umsetzung 14C markierter Pflanzeninhalts¬stoffe im Boden in Gegenwart von 15N-Ammonium. Z. Pflanzenern. Bodenk. 146: 151–159.Google Scholar
  77. Hale, M.G., and L.D. Moore. 1979. Factors affecting root exudation 11 1970–1978. Adv. Agron. 31: 93–124.Google Scholar
  78. Hammond, L.L., S.H. Chien, and J.R. Polo. 1980. Phosphorus availability from partial acidulation of two rock phosphates. Fert. Res. 1: 37–49.Google Scholar
  79. Hauck, R.D. 1971. Quantitative estimates of nitrogen-cycle processes: concepts and review. In: Nitrogen-15 in soil plant studies. pp. 65-80. IAEA, Vienna. Hauter, R. 1983. Phosphatmobilisierung in Abhangigkeit vom pH des Bodens unter besonderer Berucksichtigung der Rhizosphare. Ph. D. Thesis, FB 19, Justus Liebig-University Giessen.Google Scholar
  80. Haynes, R.J. 1982. Effects of liming on phosphate availability in acid soils. Plant and Soil 68: 289–308.Google Scholar
  81. Helal, H.M., and D.R. Sauerbeck. 1984. Influence of plant roots on carbon and phosphorus metabolism in soil. Plant and Soil 76: 175–182.Google Scholar
  82. Hendriks, L., N. Claassen, and A. Jungk. 1981. Phosphatverarmung des wurzelnahen Bodens and Phosphataufnahme von Mais and Raps. Z. Pflanzenern. Bodenk. 144: 486–499.Google Scholar
  83. Hiltner, L. 1904. Ober neuere Erfahrungen and Probleme auf dem Gebiet der Bodenbakteriologie unter besonderer Berucksichtigung der Grundiingung and Brache. Arb. Deutsch. Landw. Ges. 98: 59–79.Google Scholar
  84. Hingston, F.J., A.M. Posner, and J.P. Quirk. 1974. Anion adsorption by goethite and gibbsite. II. Desorption of anions by hydrous oxide surfaces. J. Soil Sci. 25: 16–26.Google Scholar
  85. Hinman, W.C. 1964. Fixed ammonium in some Saskatchewan soils. Can. J. Sci. 44: 151–157.Google Scholar
  86. Holford, I.C.R. 1976. Effects of phosphate buffer capacity of soil on the phosphate requirements of plants. Plant and Soil 45: 433–444.Google Scholar
  87. Hooker, M.L., G.A. Peterson, D.H. Sander, and L.A. Daigger. 1980a. Phosphate fractions in calcareous soils as altered by time and amounts of added phosphate. Soil Sci. Soc. Am. J. 44: 269–277.Google Scholar
  88. Hooker, M.L., D.H. Sander, G.A. Peterson, and L.A. Daigger. 1980b. Gaseous N losses from winter wheat. Agron. J. 72: 789–792.Google Scholar
  89. Israel, D.W., and W.A. Jackson. 1978. The influence of nitrogen nutrition on ion uptake and translocation by leguminous plants. In: C.S. Andrew and E.J. Kamprath (eds.), Mineral nutrition of legumes in tropical and subtropical soils. pp. 113–128. C SI RO, Australia.Google Scholar
  90. Itoh, S., and S.A. Barber. 1983. Phosphorus uptake by six plant species as related to root hairs. Agron. J. 75: 457–461.Google Scholar
  91. Jackson, B.L.J., and C. During. 1979. Studies of slowly available potassium in soils of New Zealand. I. Effects of leaching, temperature and potassium depletion on the equilibrium concentration of potassium in solution. Plant and Soil 51: 197–204.Google Scholar
  92. Jardine, P.M., and D.L. Sparks. 1984. Potassium-calcium exchange in a multi-reactive system. 11. Thermodynamics. Soil Sci. Soc. Am. J. 48: 45–50.Google Scholar
  93. Judel, G.K., W.G. Gebauer, and K. Mengel. 1982. Einflup der Loslichkeit verschiedener Phosphatdungemittel auf die Phosphataufnahme and den Ertrag von Sommerweizen. Z. Pflanzenern. Bodenk. 145: 296–303.Google Scholar
  94. Karbachsch, M. 1978. Kaliumernahrung des Tabaks auf einem K-fixierenden nordwestiranischen Boden. Z. Pflanzenern. Bodenk. 141: 513–522.Google Scholar
  95. Kawai, K. 1980. The relationship of phosphorus adsorption to amorphous aluminum for characterizing andosols. Soil Sci. 129: 186–190.Google Scholar
  96. Keeney, D.R., and J.M. Bremner. 1966. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. J. 58: 498–503.Google Scholar
  97. Keerthisinghe, G., and K. Mengel. 1979. Phosphatpufferung verschiedener Boden and ihre Veranderung infolge Phosphatalterung. Mitt. Dtsch. Bodenk. Ges. 29: 217–230.Google Scholar
  98. Keerthisinghe, G., S.K. DeDatta, and K. Mengel. In press. Importance of exchangeable and nonexchangeable soil NH4 + in nitrogen nutrition of wetland rice. Soil Sci.Google Scholar
  99. Keerthisinghe, G., K. Mengel, and S.K. DeDatta. 1984. The release of non¬exchangeable ammonium (15N labelled) in wetland rice soils. Soil Sci. Soc. Am. J. 48: 291–294.Google Scholar
  100. Khasawneh, F.E., and E.C. Doll. 1978. The use of phosphate rock for direct applications to soils. Adv. Agron. 30: 159–206.Google Scholar
  101. Kirkby, E.A., and K. Mengel. 1967. Ionic balance in different tissues of the tomato plant in relation to nitrate, urea or ammonium nutrition. Plant Physiol. 42: 6–14.PubMedGoogle Scholar
  102. Kjellerup, V., and A. Dam Kofoed. 1983. Nitrogen fertilization in relation to leaching of plant nutrients from soil. Lysimeter experiments with 15N. Tidsskr. Planteavl. 87: 1–22.Google Scholar
  103. Kowalenko, C.G., and D.R. Cameron. 1978. Nitrogen transformations in soil-plant systems in three years of field experiments using tracer and non-tracer methods of an ammonium-fixing soil. Can. J. Soil Sci. 58: 195–208.Google Scholar
  104. Larsen, S. 1967. Soil phosphorus. Adv. Agron. 19: 151–206.Google Scholar
  105. Legg, J.O., and F.E. Allison. 1959. Recovery of 15N tagged nitrogen from ammonium-fixing soil. Soil Sci. Soc. Am. Proc. 23: 131–134.Google Scholar
  106. Lemon, E., and R van Houtte. 1980. Ammonia exchange at the land surface. Agron. J. 72: 876–883.Google Scholar
  107. Lewis, D.G., and J.P. Quirk. 1967. Phosphate diffusion in soil and uptake by plants. III. 31P-movement and uptake by plants as indicated by 32P-autoradiography. Plant and Soil 26: 445–453.Google Scholar
  108. Liao, C.F.H., and W.V. Bartholomew. 1977. Nitrate absorption and transport by corn plants in soil system under different moisture regimes. In: Proc. Int. sem. soil env. and fertility management in intensive agricult. pp. 625–633. Soc. Sci. Soil and Manure, Japan. Nippon Dojohiryo Gakkai, Tokyo.Google Scholar
  109. Lin, C., W.J. Busscher, and L.A. Douglas. 1983a. Multifactor kinetics of phosphate reactions with minerals in acidic soils. I. Modeling and simulation. Soil Sci. Soc. Am. J. 47: 1097–1103.Google Scholar
  110. Lin, C., H.L. Motto, L.A. Douglas, and W.J. Busscher. 1983b. Multifactor kinetics of phosphate reactions with minerals in acid soils. II. Experimental curve fitting. Soil Sci. Soc. Am. J. 47: 1103–1109.Google Scholar
  111. Liu, Zhi-yu, and Sheng-wu Qin. 1981. The study of nitrogen distribution around rice rhizosphere. In: Proc. symp. paddy soil. Institute of Soil Science, Academica Sinica. pp. 511–546. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  112. Low, A.J., and E.R. Armitage. 1970. The composition of the leachate through cropped and uncropped soils in lysimeters compared with that of the rain. Plant and Soil 33: 393–411.Google Scholar
  113. Malquori, A., G. Ristori, and V. Vidrrich. 1975. Biological weathering of potassium silicates. I. Biotite. Agrochimica 19: 522–529.Google Scholar
  114. Martin, H.W., and D.L. Sparks. 1983. Kinetics of nonexchangeable potassium release from two coastal plain soils. Soil Sci. Soc. Am. J. 47: 883–887.Google Scholar
  115. Matar, A.E., J.L. Paul, and H. Jenny. 1967. Two-phase experiments with plants growing in phosphate-treated soil. Soil Sci. Soc. Am. Proc. 31: 235–237.Google Scholar
  116. Mederski, H.J., J. Stackhouse, and J.H. Wilson. 1960. Relation of soil moisture to ion absorption by corn plants. Soil Sci. Soc. Am. Proc. 24: 149–152.Google Scholar
  117. Mengel, K. 1963. Untersuchungen fiber das ‘Kalium-Kalzium-potential.’ Z. Pflanzenern. Dungung Bodenk. 103: 99–111.Google Scholar
  118. Mengel, K. 1983. Responses of various crop species and cultivars to fertilizer application. Plant and Soil 72: 305–319.Google Scholar
  119. Mengel, K., and L.C. von Braunschweig. 1972. The effect of soil moisture upon the availability of potassium and its influence on the growth of young maize plants (Zea mays L.). Soil Sci. 114: 142–148.Google Scholar
  120. Mengel, K., and R. Busch. 1982. The importance of the potassium buffer power on the critical potassium level in soils. Soil Sci. 133: 27–32.Google Scholar
  121. Mengel, K., and H. Casper. 1980. Der Einflul3 der Bodenfeuchte auf die Verfiigbarkeit von Nitratstickstoff im Boden. Z. Pflanzenern. Bodenk. 143: 617–626.Google Scholar
  122. Mengel, K., and E.A. Kirkby. 1980. Potassium in crop production. Adv. Agron. 33: 59–110.Google Scholar
  123. Mengel, K., and N. Malissiovas. 1982. Light dependent proton excretion by roots of entire vine plants (Vitis vinivera L.). Z. Pflanzenern. Bodenk. 145: 261–267.Google Scholar
  124. Mengel, K., and H.W. Scherer. 1981. Release of nonexchangeable (fixed) am-monium under field conditions during the growing season. Soil Sci. 131: 226–232.Google Scholar
  125. Mengel, K., and D. Steffens. 1982. Beziehung zwischen Kationen/Anionen¬Aufnahme von Rotklee and Protonenabscheidung der Wurzeln. Z. Pflanzenern. Bodenk. 145: 229–236.Google Scholar
  126. Mengel, K., and M. Viro. 1978. The significance of plant energy status for the uptake and incorporation of NH4 nitrogen by young rice plants. Soil Sci. Plant Nutr. 24 (3): 407–416.Google Scholar
  127. Mengel, K., and B. Wiechens. 1979. Die Bedeutung der nicht austauschbaren Kaliumfraktion des Bodens fur die Ertragsbildung von Weidelgras. Z. Pf lan¬zenern. Bodenk. 142: 836–847.Google Scholar
  128. Mengel, K., P. Robin, and L. Salsac. 1983. Nitrate reductase activity in shoots and roots of maize seedlings as affected by the form of nitrogen nutrition and the pH of the nutrient solution. Plant Physiol. 71: 618–622.PubMedGoogle Scholar
  129. Mengel, K., H.G. Schon, G. Keerthisinghe, and S.K. DeDatta. In press. Importance of exchangeable and nonexchangeable ammonium for rice growth and grain yields of flooded soils. Fert. Res.Google Scholar
  130. Mikkelsen, D.S., S.K. DeDatta, and W.N. Obcemea. 1978. Ammonia volatilization losses from flooded rice soils. Soil Sci. Soc. Am. J. 42: 725–730.Google Scholar
  131. Moghimi, A., M.E. Tate, and J.M. Oades. 1978. Phosphate dissolution by rhizosphere products. II. Characterization of rhizosphere products especially a ketogluconic acid. Soil Biol. Biochem. 10: 283–286.Google Scholar
  132. Mojallali, H., and S.B. Weed. 1978. Weathering of micas by mycorrhizal soybean plants. Soil Sci. Soc. Am. J. 42: 367–372.Google Scholar
  133. Moore, A.W. 1969. Azolla: biology and agronomic significance. Bot. Rev. 35: 17–34.Google Scholar
  134. Mortland, M.M. 1958. Kinetics of potassium release from biotite. Soil Sci. Soc. Am. Proc. 22: 503–508.Google Scholar
  135. Mortland, H.M., K. Lawton, and G. Uehara. 1956. Alteration of biotite to vermiculite by plant growth. Soil Sci. 82: 477–481.Google Scholar
  136. Muller, S., H. Ansorge, O. Hageman, H. Gorlitz, J. Garz, and H. Stumpe. 1976. Untersuchungen caber die Moglichkeiten einer Bemessung der ersten N-Gabe zu Getreide durch Beriicksichtigung des Gehaltes an anorganischem Stickstoff im Boden. Arch. Acker- Pflanzenbau Bodenk. 20: 713–722.Google Scholar
  137. Munns, D.N. 1968. Medicago sativa in solution culture. III. Effects of nitrate on root hairs and infection. Plant and Soil 29: 33–47.Google Scholar
  138. Myers, R.J.K., and E.A. Paul. 1971. Plant uptake and immobilization of 15N-labelled ammonium nitrate in a field experiment with wheat. In: Nitrogen-15 in soil plant studies. pp. 55–64. IAEA, Vienna.Google Scholar
  139. Nair, K.P.P., and K. Mengel. 1984. The importance of the phosphate buffer power for the phosphate uptake of rye. Soil Sci. Soc. Am. J. 48: 92–95.Google Scholar
  140. Nair, P.K., and H. Grimme. 1979. Q/I relations and electroultrafiltration of soils as measures of potassium availability to plants. Z. Pflanzenern. Bodenk. 142: 87–94.Google Scholar
  141. Nanzyo, M., and Y. Watanabe. 1982. Diffuse reflectance infrared spectra and ion adsorption properties of the phosphate surface complex on goethite. Soil Sci. Plant Nutr. 28: 359–368.Google Scholar
  142. Nemeth, K. 1979. The availability of nutients in the soil as determined by electroultrafiltration (EUF). Adv. Agron. 31: 155–188.Google Scholar
  143. Nemeth, K., I.Q. Makhdum, K. Koch, and H. Beringer. 1979. Determination of categories of soil nitrogen by electroultrafiltration (EUF). Plant and Soil 53: 445–453.Google Scholar
  144. Newman, A.C.D. 1969. Cation exchange properties of micas. I. The relation between mica composition and potassium exchange in solutions of different pH. J. Soil Sci. 20: 357–373.Google Scholar
  145. Neyra, C.A., and J. Dobereiner. 1977. Nitrogen fixation in grasses. Adv. Agron. 29: 1–38.Google Scholar
  146. Niederbudde, E.A. 1967. Mineralverwitterung and Kaliumfixierung in Anfangs-stadien der Bodenbildung des oberen Etschtales. Z. Pflanzenern. Dungung Bodenk. 115: 28–43.Google Scholar
  147. Nielsen, J.D. 1970. Fixation and release of potassium in Danish soils. Tidsskr. Planteavl. 74: 24–43.Google Scholar
  148. Nishizawa, N., T. Yoshida, and Y. Arima. 1983. Electron microscopic study of associative N2-fixing bacteria in roots of rice seedlings. Soil Sci. Plant Nutr. 29: 261–270.Google Scholar
  149. Nyatsanga, T., and W.H. Pierre. 1973. Effect of nitrogen fixation by legumes on soil acidity. Agron. J. 65: 936–940.Google Scholar
  150. Nye, P.H. 1966. The effect of the nutrient intensity and buffering power of a soil, and the absorbing power, size and root hairs of a root, on nutrient absorption by diffusion. Plant and Soil 25: 81–105.Google Scholar
  151. Nye, P.H. 1979. Diffusion of ions and uncharged solutes in soils and clays. Adv. Agron. 31: 225–272.Google Scholar
  152. Obigbesan, G.O., and K. Mengel. 1981 a. Relationship between electroultrafftration (EUF) extractable phosphate, P-uptake and P buffer capacity of selected tropical soils. Niger. J. Soil Sci. 1: 1–12.Google Scholar
  153. Obigbesan, G.O., and K. Mengel. 1981b. Use of electroultrafiltration (EUF) method for investigating the behaviour of phosphate fertilizers in tropical soils. Fert. Res. 2: 169–176.Google Scholar
  154. Okajima, H., H. Kubota, and T. Sakuma. 1983. Hysteresis in the phosphorus sorption and desorption processes of soils. Soil Sci. Plant Nutr. 29: 271–283.Google Scholar
  155. Olsen, S.R., and F.S. Watanabe. 1970. Diffusive supply of phosphorus in relation to soil texture variations. Soil Sci. 110: 318–327.Google Scholar
  156. Olsen, S.R., C.V. Cole, F.S. Watanabe, and L.A. Dean. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Cir. No. 939.Google Scholar
  157. Osborne, G.J. 1976. The significance of intercalary ammonium in representative surface and subsoils from Southern New South Wales. Austr. J. Soil Res. 14: 381–388.Google Scholar
  158. Overrein, K.N., and P.G. Moe. 1967. Factors affecting urea hydrolysis and ammonia volatilization in soil. Soil Sci. Soc. Am. Proc. 31: 57–61.Google Scholar
  159. Ozanne, P.G., and T.C. Shaw. 1967. Phosphate sorption by soils as a measure of the phosphate requirement for pasture growth. Austr. J. Agr. Res. 18: 601–612.Google Scholar
  160. Page, M.B., and O. Talibudeen. 1977. Nitrate concentrations under winter wheat and in fallow soil during summer at Rothamsted. Plant and Soil 47: 527–540.Google Scholar
  161. Pagel, H., and H. van Huay. 1976. Wichtige Parameter der Phosphat-Sorptionskurven einiger Boden der Tropen and Subtropen and ihre zeitliche Veranderung durch P-Diingung. Arch. Acker- Pflanzenbau Bodenk. 20: 765–778.Google Scholar
  162. Palmer, B., and KJ. Gilkes. 1983. The influence of application rate on the relative effectiveness of calcined Christmas Island C-grade rock phosphate and super-phosphate when applied as mixtures. Fert. Res. 4: 45–50.Google Scholar
  163. Parfitt, R.L. 1978. Anion adsorption by soils and soil materials. Adv. Agron. 30: 1–50.Google Scholar
  164. Parthier, B. 1978. Die biologische Fixierung des atmospharischen Stickstoffs. Biol. Rdsch. 16: 345–364.Google Scholar
  165. Paul, R.E., and R.L. Jones. 1976. Studies on the secretion of maize root cap slime. IV. Evidence for the involvement of dictyosomes. Plant Physiol. 57: 249–256.Google Scholar
  166. Peterson, W.R., and S.A. Barber. 1981. Soybean root morphology and K uptake. Agron. J. 73: 316–319.Google Scholar
  167. Pfaff, C. 1963. Das Verhalten des Stickstoffs im Boden nach langjahrigen Lysimeterversuchen. Z. Acker- Pflanzenbau 117: 77–99.Google Scholar
  168. Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron. 24: 29–96.Google Scholar
  169. Rausell-Colom, J.A., T.R. Sweatman, C.B. Wells, and K. Norish. 1965. Studies in artificial weathering of micas. In: Experimental pedology proc. pp. 40–70. Univ. Nottingham, 11th Easter School Agr. Sci.Google Scholar
  170. Recke, H. 1984. Kalium- and Stickstoffverfugbarkeit siidniedersachsischer Stand-orte-bestimmt mittels Elektro-Ultrafdtration (EUF) in Beziehung zu Ertrag and Qualitat der Zuckerriibe. Ph. D. Thesis, FB 19, Justus Liebig-University Giessen.Google Scholar
  171. Reddy, K.R., and P.S.C. Rao. 1983. Nitrogen and phosphorus fluxes from a flooded organic soil. Soil Sci. 136: 300–307.Google Scholar
  172. Reddy, K.R., W.H. Patrick, and R.E. Phillips. 1976. Ammonium diffusion as a factor in nitrogen loss from flooded soils. Soil Sci. Soc. Am. J. 40: 528–533.Google Scholar
  173. Renger, M., and O. Strebel. 1976. Nitratanlieferung an die Pflanzenwurzel als Funktion der Tiefe and der Zeit. Landw. Forsch. SH 33 (11): 13–19.Google Scholar
  174. Rhue, R.D., and D.R. Hensel. 1983. The effect of lime on the availability of residual phosphorus and its extractability by dilute acid. Soil Sci. Soc. Am. J. 47: 266–270.Google Scholar
  175. Rich, C.I. 1968. Mineralogy of soil potassium. In: V.J. Kilmer, S.E. Younts, and N.C. Brady (eds.), The role of potassium in agriculture. Amer. Soc. Agron. pp. 79–108. Madison, WI.Google Scholar
  176. Rich, C.I. 1972. Potassium in soil minerals. In: Potassium in soil. pp. 15–31. Int. Potash Institute, Berne.Google Scholar
  177. Riga, A., V. Fischer, and H.J. van Praag. 1980. Fate of fertilizer nitrogen applied to winter wheat as Na15NO3 and (15NH4)2SO4 studied in microplots through a four-course rotation. 1. Influence of fertilizer splitting on soil and fertilizer nitrogen. Soil Sci. 130: 88–99.Google Scholar
  178. Riley, D., and S.A. Barber. 1971. Effect of ammonium and nitrate fertilization on phosphorus uptake as related to root-induced pH changes at the root-soil interface. Soil Sci. Soc. Am. Proc. 35: 301–306.Google Scholar
  179. Roberts, S., W.H. Weaver, and J.P. Phelps. 1980. Use of the nitrate soil test to predict sweet corn response to nitrogen fertilization. Soil Sci. Soc. Am. J. 44: 306–308.Google Scholar
  180. Rodgers, G.A. 1983. Effect of dicyandiamide on ammonia volatilization from urea in soil. Fert. Res. 4: 361–367.Google Scholar
  181. Rodrigues, G. 1954. Fixed ammonium in tropical soils. J. Soil Sci. 5: 264–274.Google Scholar
  182. Rolston, D.E. 1977. Measuring nitrogen loss from denitrification. Calif. Agr. 31: 12–13.Google Scholar
  183. Rolston, D.E., M. Fried, and D.A. Goldhamer. 1976. Denitrification measured directly from nitrogen and nitrous oxide gas fluxes. Soil Sci. Soc. Am. J. 40: 259–266.Google Scholar
  184. Rovira, A.D., and C.B. Davey. 1974. Biology of the rhizosphere. In: E.W. Carson (ed.), The plant root and its environment. pp. 153–204. University Press of Virginia, Charlottesville.Google Scholar
  185. Rowell, D.L., M.W. Martin, and P.H. Nye. 1967. The measurement and mechanism of ion diffusion in soils. III. The effect of moisture content and soil-solution concentration on the self-diffusion of ions in soils. Soil Sci. 18: 204–222.Google Scholar
  186. Russell, J. 1973. Soil conditions and plant growth. 10th ed. p. 350. Longman, London.Google Scholar
  187. Russell, W.J., and D.R. Johnson. 1975. Carbon-14 assimilate translocation in nodulated and nonnodulated soybeans. Crop Sci. 15: 159–161.Google Scholar
  188. Ryden, J.C., JX Syers, and R.F. Harris. 1973. Phosphorus in runoff and streams. Adv. Agron. 25: 1–45.Google Scholar
  189. Sanders, F.E., and P.B. Tinker. 1973. Phosphate flow into mycorrhizal roots. Pest. Sci. 4: 385–395.Google Scholar
  190. Sauerbeck, D., and B. Johnen. 1976. Der Umsatz von Pflanzenwurzeln im Laufe der vegetationsperiode and dessen Beitrdge zur Bodenatmung. Z. Pflanzenern. Bodenk. 139: 315–328.Google Scholar
  191. Savant, N.K., and S.K. DeDatta. 1982. Nitrogen transformations in wetland rice soils. Adv. Agron. 35: 241–302.Google Scholar
  192. Schachtschabel, P. 1980. Phosphatdiingung in Abhdngigkeit vom Phosphatgehalt im Boden. Z. Acker- Pflanzenbau 149: 191–205.Google Scholar
  193. Schachtschabel, P., and G. Heinemann. 1964. Beziehungen zwischen P-Bindungs-art and pH-overt bei Upb6den. Z. Pflanzenern. Dfingung Bodenk. 105: 1–13.Google Scholar
  194. Schäfer, P., and M. Siebold. 1972. Einfluβ steigender Kaligaben auf Ertrag and Qualitift des Sommerweizens ‘Kolibri’, ermittelt auf einem kaliflixierenden Standort. Bayer. Ldw. Jahrb. 49: 19–39.Google Scholar
  195. Scharpf, H.C., and J. Wehrmann. 1975. Bedeutung des Mineralstickstoffvorrates des Bodens zu Vegetationsbeginn fur die Bernessung der N-Diingung zu Winterweizen. Landw. Forsch. SH 32 (l): 100–114.Google Scholar
  196. Scheffer, K., A. Schreiber, and R. Kickuth. 1980. Die sorptive Bindung von Diingerphosphaten im Boden and die phosphatmobilisierende Wirkung der Kieselsiiure. i. Mitteilung: Die sorptive Bindung von Phosphat im Boden. Arch. Acker- Pflanzenbau Bodenk. 24: 799–814.Google Scholar
  197. Scherer, H.W. 1980. Dynamik and Pflanzenverffigbarkeit von nicht austausch-barem NH4+ im Boden. Landw. Forsch. SH 37:217–225, Kongreβband.Google Scholar
  198. Scherer, H.W., and K. Mengel. 1981. Einflup der Bodenfeuchte auf die Freisetzung von nicht austauschbarem NH4+ und dessen Aufnahme durch die Pflanze. Mitt. Dts. Bodenk. Ges. 32: 429–438.Google Scholar
  199. Scherer, H.W., and K. Mengel. 1983. Umsatz von 15N markiertem Nitratstickstoff im. Boden in Abhiingigkeit von Strohdiingung and Bodenfeuchte. Z. Pflanzenern. Bodenk. 146: 109–117.Google Scholar
  200. Schmeer, H. 1983. Einflup der Strohdiingung auf die Freisetzung von gasf6rmigen Sickstoffverbindungen. Mitt. Duch. Bodenk. Ges. 38: 417–422.Google Scholar
  201. Schön, M., E.A. Niederbudde, and A. Mahkorn. 1976. Ergebnisse eines 20 jäffirigen Vermchen mb Mineral- uod Stallmistdiingung in L68gobiet bei Laodmberg (lecbj) Z. Acker- Pflanzenbau l43: 27–37.Google Scholar
  202. Schouwenburg, J.C., and A.C. Schuffelen. 1963. Potassium exchange behaviour of an Ulite. Neth. J Agr Sci. 11: l3–22.Google Scholar
  203. Schoeder, D. 1974. Relationship between soil potassium and the potassium nutrition of the plant. In: Potassium research and agricultural production. pp. 53–63. Int. Potash Institute, Berne.Google Scholar
  204. Scbroeder D. 1976. KaliumboBodeuuud Kuliom+Enoiibcuug derPDuo,e. Kali-Briefie Fbuhgeb. 1 (3).Google Scholar
  205. Schroede, D.,and B. Dümmomler. 1966. Kalium-Nachlieferung,Kalium-Festleguug und Toumineralbestuodmchleswigholsteinischer Böden. Z. Pamzenern. Düngung Bodeok. 113: 213–215.Google Scholar
  206. Schubert, K.R., N.T. Jennings, and BT Evanm. 1978. BHydrogen reactions of nodulated leguminous plants. Plant Physiol. 61: 398–401.PubMedGoogle Scholar
  207. Schülller, H. 1969. Die CAL-Methode, eine reue Methode zur @estimmung des pflanzenverfilgbaren Phosphates in Böden. Z. Pflanzenern Bodenk. l23: 40–63.Google Scholar
  208. Schwertmann, U. 1966. Dom Verholten voo Yermiculiten gegenUber Kalium, Aluminium undanderen Kationen.II.Chemimche Verbinduogen. Z. Panzenern. Düngung Bodeok. 115: 200–209.Google Scholar
  209. Schwertmanu, 0., and E. Suhieck. 1980. Das Verhalten voo Phosbat in eisenoxidreichen Kalkgleyen der MUochener Schotterebene. Z. Paozenern. Bodenk. l43: 39l–40l.Google Scholar
  210. Scott, A.D., and SJ.Smith. l966.Susceptibility of interlayer potassium in micas to exchange with sodium. Clays Clay Min. ProuJ4Nat. pp. 69–81.Google Scholar
  211. Shiga,H.,aud W. Ventura. 1976. Nitrogen supplying ability of paddy soils under field conditions iuthe Philippines. Soil SoLPlant Nutr 22 (4): 387–39V.Google Scholar
  212. Sibbemeu, E. 1978. AAn inventijmioo of the anion-exchange resin method for moil phosphate extraction. Plant dnd Soil 50: 305–321.Google Scholar
  213. Sibbesen, E. 1983. Phosphate soil tests and their suitability to assess the phosphate status of soil. J Sci Food Agr. 34: l360–1374.Google Scholar
  214. Silburbush,M., and S.A. Barber. l903o. Prediction of phosphorus and potassium uptake by soybeans with uoechuoistic- mathematical model. Soil Sci. Soc. Am. J. 47: 262–265.Google Scholar
  215. Silburbusb,M.,and S.A. Barber. lQ03b.Sensitivity analysis o[parameters parameters used in simulating potassium uptake with a mechanistic- mathematical model. AgrouI J. 75: 851–854.Google Scholar
  216. Silberbush,M.,and S.A. Barber. 1983c. Sensitivity of simulated phosphorus uptake to parameters used byamechanistic-mathematical model. Plant and Soil 74: 93–100.Google Scholar
  217. Sims, J.T., and B.G. Ellis. 1983. Adsorption and availability of phosphorus following the application of limestone to an acid, aluminous soil. Soil Sci. Soc. Am. J. 47: 888–893.Google Scholar
  218. Sims, J.R., and G.D. Jackson. 1971. Rapid analysis of soil nitrate with chromo-tropic acid. Soil Sci. Soc. Am. Proc. 35: 603–606.Google Scholar
  219. Singh, B., and S.P.S. Brar. 1977. Dynamics of native and applied potassium in maize-wheat rotation. Potash Review, Subj. 9, Cereal crops 35th suite, No. 6.Google Scholar
  220. Singh, P.K. 1979. The use of Azolla in rice production in India. In: Nitrogen and rice. pp. 407–418. Int. Rice Res. Inst., Los Banos, Philippines.Google Scholar
  221. Sluijsmans, C.M.J., and G.J. Kolenbrander. 1977. The significance of animal manure as a source of nitrogen in soils. In: Proc. Int. seminar on soil environment and fertility management in intensive agriculture. pp. 403–411. Tokyo.Google Scholar
  222. Smika, D.E., H.J. Haas, and J.F. Power. 1965. Effect of moisture and nitrogen fertilizer on growth and water use by native grass. Agron. J. 57: 483–486.Google Scholar
  223. Smiley, R.W. 1974. Rhizosphere pH as influenced by plants, soils and nitrogen fertilizers. Soil Sci. Am. Proc. 38: 795–799.Google Scholar
  224. Soper, R.J., and P.M. Huang. 1962. The effect of nitrate nitrogen in the soil profile on the response of barley to fertilizer nitrogen. Can. J. Soil Sci. 43: 350–358.Google Scholar
  225. Stadelmann, F.X., O.J. Furrer, S. K. Gupta, and P. Lischer. 1983. Einflup von Bodeneigenschaften, Bodennutzung and Bodentemperatur auf die N-Mobili-sierung von Kulturboden. Z. Pflanzenern. Bodenk. 146: 228–242.Google Scholar
  226. Stanford, G., and W.H. Pierre. 1946. The relation of potassium fixation to ammonium fixation. Soil Sci. Soc. Am. Proc. 11: 155–160.Google Scholar
  227. Steffens, D. 1982. Vergleichende Untersuchungen uber das Kalium-Aufnahmever-m6gen and die Entwicklung des Wurzelsystems von Lolium perenne and Trifolium pratense. Ph. D. Thesis, FB 19, Justus Liebig-University Giessen.Google Scholar
  228. Steffens, D. 1984. Wurzelstudien and Phosphataufnahme von Weidelgras and Rotklee unter Feldbedingungen. Z. Pflanzenern. Bodenk. 147: 85–97.Google Scholar
  229. Steffens, D., and K. Mengel. 1979. Das Aneignungsvermogen von Lolium perenne im Vergleich zu Trifolium pratense fur Zwischenschicht-Kalium der Tonminerale. Landw. Forsch. SH 36: 120–127.Google Scholar
  230. Steffens, D., and K. Mengel. 1981. Vergleichende Untersuchungen zwischen Lolium perenne und Trifolium pratense uber das Aneignungsvermogen von Kalium. Mitt. Dtsch. Bodenk. Ges. 32: 375–386.Google Scholar
  231. Stewart, W.D.P. 1967. Nitrogen-fixing plants. Science 158: 1426–1432.PubMedGoogle Scholar
  232. Strebel, O., W.H.M. Duynisveld, H. Grimme, M. Renger, and H. Fleige. 1983. Wasserentzug durch Wurzeln and Nitratanlieferung ( Massenfluβ, Diffusion) als Funktion von Bodentiefe and Zeit bei einem Zuckerrubenbestand. Mitt. Dtsch. Bodenk. Ges. 38: 153–158.Google Scholar
  233. Strebel, O., H. Grimme, M. Renger, and H. Fleige. 1980. A field study with nitrogen-15 of soil and fertilizer nitrate uptake and of water withdrawal by spring wheat. Soil Sci. 130: 205–210.Google Scholar
  234. Sturm, H., and K Isermann. 1978. Überlegungen zur langfristigen Ausnutzung von Mineraldiinger-Phosphat auf Ackerboden. Landw. Forsch. SH 35:180–192, Kongrepβand.Google Scholar
  235. Stutte, C.A., R.T. Weiland, and A.R. Blem. 1979. Gaseous nitrogen loss from soybean foliage. Agron. J. 71: 95–97.Google Scholar
  236. Taylor, R.W., and B.G. Ellis. 1978. A mechanism of phosphate adsorption and anion exchange resin surface. Soil Sci. Soc. Am. J. 42: 432–436.Google Scholar
  237. Terman, G.L. 1979. Volatilization losses of nitrogen as ammonia from surface¬applied fertilizers, organic amendments, and crop residues. Adv. Agron. 31: 189–223.Google Scholar
  238. Teske, W., and W. Matzel. 1976. Stickstoffauswaschung and Stickstoffausnutzung durch die Pflanzen in Feldlysimetern bei Anwendung von 15N-markiertem Harnstoff. Arch. Acker- Pflanzenbau Bodenk. 20: 489–502.Google Scholar
  239. Tomar, J.S., and R.J. Soper. 1981 a. An incubation study of nitrogen added as urea to several Manitoba soils with particular reference to immobilization of nitrogen. Can. J. Soil Sci. 61: 1–10.Google Scholar
  240. Tomar, J.S., and R.J. Soper. 1981 b. Fate of tagged urea N in the field with different methods of N and organic matter placement. Agron. J. 73: 991–996.Google Scholar
  241. Trolldenier, G. 1973. Secondary effects of potassium and nitrogen nutrition of rice: change in microbial activity and iron reduction in the rhizosphere. Plant and Soil 38 (2): 267–279.Google Scholar
  242. van der Paauw, F. 1958. Relations between the potash requirements of crops and meteorological conditions. Plant and Soil 9: 254–268.Google Scholar
  243. van der Paauw, F. 1965. Factors controlling the efficiency of rock phosphate for potatoes and rye on humic sandy soils. Plant and Soil 22: 81–98.Google Scholar
  244. van der Paauw, F. 1971. An effective water extraction method for the determination of plant-available soil phosphorus. Plant and Soil 34: 467–481.Google Scholar
  245. van Praag, H.J., V. Fischer, and A. Riga. 1980. Fate of fertilizer nitrogen applied to winter wheat as Na 15NO3 and (15NH4)2SO4 studied in microplots through a four-course rotation. 2. Fixed ammonium turnover and nitrogen reversion. Soil Sci. 130: 100–105.Google Scholar
  246. von Braunschweig, L.C., and K. Mengel. 1972. Der Einflup verschiedener den Kaliumzustand des Bodens charakterisierender Parameter auf den Kornertrag von Hafer. Landw. Forsch. SH 26 (I): 65–72.Google Scholar
  247. von Reichenbach, H. 1972. Factors of mica transformation. In: Potassium in soil. pp. 33–42. Int. Potash Institute, Berne.Google Scholar
  248. Wada, H., S. Panichsakpatana, M. Kimura, and Y. Takai. 1978. Nitrogen fixation in paddy soils. I. Factors affecting N2 fixation. Soil Sci. Plant Nutr. 24: 357–365.Google Scholar
  249. Walker, T.W., and J.K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15: 1–19.Google Scholar
  250. Wanasuria, S., S.K. DeDatta, and K. Mengel. 1981. Rice yield in relation to electroultrafiltration extractable soil potassium. Plant and Soil 59: 23–31.Google Scholar
  251. Waring, S.A., and J.M. Bremner. 1964. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201: 951–952.Google Scholar
  252. Watanabe, I., N.S. Berja, and D.C. Rosario. 1980. Growth of Azolla in paddy fields as affected by phosphorus fertilizer. Soil Sci. Plant Nutr. 26: 301–307.Google Scholar
  253. Watanabe, I., C.R. Espinas, N.S. Berja, and B.V. Alimagno. 1977. Utilization of the Azolla-Anabaena complex as a nitrogen fertilizer for rice. IRRI Res. Paper Ser. 11: 3–14.Google Scholar
  254. Webster, C.P. and R.J. Dowdell, 1982. Nitrous oxide emission from permanent grass swards. J. Sci. Food Agr. 33: 227–230.Google Scholar
  255. Wehrmann, J., and H.C. Scharpf. 1979. Der Mineralstoffgehalt des Bodens als Mapstab fur den Stickstoffdiingerbedarf (Nmin=Methode). Plant and Soil 52: 109–126.Google Scholar
  256. Weller, F. 1983. Stick stoffumsatz in einigen obstbaulich genutzten Boden Siidwest-deutschlands. Z. Pflanzenern. Bodenk. 146: 261–270.Google Scholar
  257. Werner, D. 1980. Stickstoff (N2)-Fixierung and Produktions-biologie. Angew. Bot. 54: 67–75.Google Scholar
  258. Werner, W. 1969. Kennzeichnung des pflanzenverfiigbaren Phosphats nach mehrjahriger Diingung mit verschiedenen Phosphaten. Z. Pflanzenern. Bodenk. 122: 19–32.Google Scholar
  259. Wiklicky, L., K. Nemeth, and H. Recke. 1983. Beurteilung des Stickstoff-Diinge¬bedarfs fiir die Zuckerriibe mittels EUF. Symposium nitrogen and sugar-beet. pp. 533–543. Int. Inst. Sugar-beet Res., Brussels.Google Scholar
  260. Wild, A., D.L. Rowell, and M.A. Ogunfowora. 1969. The activity ratio as a measure of the intensity factor in potassium supply to plants. Soil Sci. 108: 432–439.Google Scholar
  261. Winner, C., I. Feyerabend, and A. von Miiller. 1976. Untersuchungen uber den Gehalt an Nitratstickstoff in einem Bodenprofil and dessen Entzug durch Zuckerriiben. Zucker 29: 477–484.Google Scholar
  262. Woodruff, C.M. 1955. Ionic equilibria between clay and dilute salt solutions. Soil Sci. Soc. Am. Proc. 19: 36–40.Google Scholar
  263. Young, R.A., J.L. Ozbun, A. Bauer, and E.H. Vasey. 1967. Yield response of spring wheat and barley to nitrogen fertilizer in relation to soil and climatic factors. Soil Sci. Soc. Am. Proc. 31: 407–410.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1985

Authors and Affiliations

  • Konrad Mengel
    • 1
  1. 1.Institut für PflazenernöhrungFederal Republic of Germany

Personalised recommendations