A Natural Example of the Kinetic Controls of Compositional and Textural Equilibration

  • R. J. Tracy
  • E. L. McLellan
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 4)

Abstract

Textural and compositional disequilibrium have been documented in both regional metamorphism (Griffin, 1971; Tracy, 1982) and contact metamorphism (Hollister, 1969; Loomis, 1976). However, the significance of kinetics in controlling assemblages, compositions, and textures has been treated by relatively few authors (e.g., Loomis, 1976; Foster, 1982). Among the variables that control the rates of metamorphic reactions are the rate of supply (or removal) of heat, the rate of supply of matter (diffusion control), and the rate of reactant dissolution and/or product absorption during recrystallization (interface control). In the initial high-temperature stages of contact metamorphism (i.e., until cooling begins), reaction rates are more likely to be interface than diffusion controlled because both thermal energy input and diffusion coefficients will be large at the initially higher temperatures and therefore may not be rate limiting. As temperatures fall, however, heat flux and diffusion rates may become increasingly important. The rate-limiting factor will control the nature and extent of compositional and textural equilibrium. Thus, diffusion control will lead to strict local equilibrium (Fisher, 1978) whereas interface control may lead to a partial approach to equilibrium on a larger scale (Loomis, 1976).

Keywords

Quartz Silicate Calcite Recrystallization Magnetite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, F. (1964) Reaction between mafic magmas and pelitic schist, Cortlandt, New York. Amer. J. Sci. 262, 614–634.CrossRefGoogle Scholar
  2. Bender, J. F., Hanson, G. N., and Bence, A. E. (1984) Cortlandt Complex: Differentiation and contamination in plutons of alkali basalt affinity. Amer. J. Sci. 284, 1–57.CrossRefGoogle Scholar
  3. Burke, J. (1975) The Kinetics of Phase Transformations in Metals. Pergamon Press, London.Google Scholar
  4. Caporuscio, F. A., and Morse, S. A. (1978) Occurrence of sapphirine + quartz at Peekskill, New York. Amer. J. Sci. 278, 1334–1352.CrossRefGoogle Scholar
  5. Carmichael, D. M. (1969) On the mechanism of prograde reactions in quartz-bearing pelitic rocks. Contrib. Mineral. Petrol. 20, 244–267.CrossRefGoogle Scholar
  6. Carslaw, H. S., and Jaeger, J. C. (1959) Conduction of Heat in Solids, 2nd ed. Oxford University Press, Oxford.Google Scholar
  7. Chadwick, G. A. (1972) Metallography of Phase Transformations. Butterworths, London.Google Scholar
  8. Fisher, G. W. (1978) Rate laws in metamorphism. Geochim. Cosmochim. Acta 42, 1035–1050.CrossRefGoogle Scholar
  9. Foster, Jr., C. T. (1982). A thermodynamic model of mineral segregations in the lower sillimanite zone near Rangeley, Maine. Amer. Mineral. 66, 260–277.Google Scholar
  10. Freer, R. (1981) Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contrib. Mineral. Petrol. 76, 440–454.CrossRefGoogle Scholar
  11. Friedman, G. M. (1956) The origin of spinel-emery deposits with particular reference to those of the Cortlandt Complex, New York. New York State Museum Bulletin 351.Google Scholar
  12. Gribble, C. D., and O’Hara, M. J. (1967) Interaction of basic magma with pelitic materials. Nature 214, 1198–1201.CrossRefGoogle Scholar
  13. Griffin, W. L. (1971) Genesis of coronas in anorthosites of the upper Jotun Nappe, Indre Sogn, Norway. J. Petrol. 12, 219–243.Google Scholar
  14. Helgeson, H. C., Delaney, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J. Sci. 278A, 229 p.Google Scholar
  15. Hollister, L. S. (1969) Contact metamorphism in the Kwoiek area of British Columbia: An endmember of the metamorphic process. Geol. Soc. Amer. Bull. 80, 2465–2493.CrossRefGoogle Scholar
  16. Jackson, K. A., Uhlmann, D. R., and Hunt, J. P. (1967) On the nature of crystal growth from the melt. J. Cryst. Growth 1, 1–36.CrossRefGoogle Scholar
  17. Jansen, J. B. H., and Schuiling, R. D. (1976) Metamorphism on Naxos: Petrology and geothermal gradients. Amer. J. Sci. 276, 1225–1253.CrossRefGoogle Scholar
  18. Joesten, R. (1974) Local equilibrium and metasomatic growth of zoned calc-silicate nodules from a contact aureole, Christmas Mountains, Big Bend Region, Texas. Amer. J. Sci. 274, 876–901.CrossRefGoogle Scholar
  19. Joesten, R. (1983) Grain growth and grain-boundary diffusion in quartz from the Christmas Mountains (Texas) contact aureole. Amer. J. Sci. 283A, 233–254.Google Scholar
  20. Jones, K. A., Wolfe, M. J., and Galwey, A. K. (1975) A theoretical consideration of the kinetics of calcite recrystallization produced by two basalt dykes in Co. Antrim, Northern Ireland. Contrib. Mineral. Petrol. 51, 283–296.CrossRefGoogle Scholar
  21. Kirkpatrick, R. J. (1975) Crystal growth from the melt: A review. Amer. Mineral. 60, 798–814.Google Scholar
  22. Kretz, R. (1966) Grain-size distributions for certain metamorphic minerals in relation to nucleation and growth. J. Geol. 74, 147–173.CrossRefGoogle Scholar
  23. Lasaga, A. C., Richardson, S. M., and Holland, H. D. (1977) The mathematics of cation diffusion and exchange between silicate minerals during retrograde metamorphism, in Energetics of Geologic Processes, edited by S. K. Saxena and S. Bhattacharji, pp. 353–388. Springer-Verlag, Berlin.Google Scholar
  24. Long, L. E., and Kulp, J. L. (1962) Isotopic age study of the metamorphic history of the Manhattan and Reading Prongs. Geol. Soc. Amer. Bull 73, 969–996.CrossRefGoogle Scholar
  25. Loomis, T. P. (1976) Irreversible reactions in high grade metapelitic rocks. J. Petrol. 17, 559–588.Google Scholar
  26. Loomis, T. P. (1979) A natural example of metastable reactions involving garnet and sillimanite. J. Petrol. 20, 271–292.Google Scholar
  27. Putnis, A., and McConnell, J. D. C. (1980) Principles of Mineral Behavior. Blackwell, Oxford.Google Scholar
  28. Ratcliffe, N. M., Bender, J. F., and Tracy, R. J. (1983) Tectonic setting, chemical petrology and pedogenesis of the Cortlandt Complex and related intrusive rocks of southeastern New York State, Field Guide, Northeastern Section. Geol. Soc. Amer. New Paltz, New York.Google Scholar
  29. Ratcliffe, N. M., Armstrong, R. L., Mose, D. G., Seneschal, R., Williams, R., and Barramonte, M. J. (1982) Emplacement history and tectonic significance of the Cortlandt Complex. Amer. J. Sci 282, 358–390.CrossRefGoogle Scholar
  30. Shewmon, P. G. (1963) Diffusion in Solids. McGraw-Hill, New York.Google Scholar
  31. Tanner, S. B., Kerrick, D. M., and Lasaga, A. C. (1983) The kinetics and mechanisms of the reaction: calcite + quartz = wollastonite + carbon dioxide (abstract). Geol. Soc. Amer. Abstr. Progs. 15, 704.Google Scholar
  32. Thompson, Jr., J. B. (1959) Local equilibrium in metasomatic processes, in Researches in Geochemistry, pp. 427–457. Wiley, New York.Google Scholar
  33. Tracy, R. J. (1982) Compositional zoning and inclusions in metamorphic minerals, in Characterization of Metamorphism through Mineral Equilibria, edited by J. M. Ferry, Reviews in Mineralogy, 10. Mineral. Soc. America, 355–397.Google Scholar
  34. Tracy, R. J., and Thompson, A. B. (1979) Partial fusion and magma hybridization, Cortlandt complex, New York (abstract). Trans. Amer. Geophys. Union 60, 411.Google Scholar
  35. Turnbull, P. (1956) Phase changes. Solid State Physics 3, 225–306.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1985

Authors and Affiliations

  • R. J. Tracy
  • E. L. McLellan

There are no affiliations available

Personalised recommendations