Skip to main content

Kinetics of Metamorphic Reactions at Elevated Temperatures and Pressures: An Appraisal of Available Experimental Data

  • Chapter

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 4))

Abstract

Experimental kinetic studies and related theory for solid-state transformations relevant to metamorphic processes unfortunately lag far behind kinetic investigations of mineral-fluid reactions, related to natural waters and their precipitates, and mineral-melt reactions, related to crystallization of igneous rocks (see volume edited by Lasaga and Kirkpatrick, 1981). While metamorphic rocks have experienced successive temperature (T) and pressure (P) changes during their evolution, only rarely can we constrain the magnitude and direction of these P-T changes as functions of time (t). It is at present difficult to say whether characteristic disequilibrium features, observed petrographically, mean that a certain temperature was never achieved, or was only achieved for a short time. Such features might include the coexistence of two polymorphs or any complete reactant plus product assemblage as well as thermodynamically incompatible phases, irregular grain boundaries, and oriented fabrics. A great variety of environmental factors (presence of fluid, deformation, local chemical catalysts, etc.) can influence the kinetics of most mineral transformations. However, it is not often possible to see to what degree such factors have influenced an observed mineral assemblage from petrographic data alone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, H. I., Aaron, H. B., and Kinsman, K. R. (1971) Origins of microstructures resulting from precipitation. Metallography 4, 1–42.

    Article  Google Scholar 

  • Andrade, E. N. da C., and Aboav, D. A. (1966) Grain growth in metals of close- packed hexagonal structure. Proc. Roy Soc. London 291A, 18–40.

    Google Scholar 

  • Avrami, M. (1939) Kinetics of phase change. I. General theory. J. Chem. Phys. 7, 1103–1112.

    Article  Google Scholar 

  • Avrami, M. (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J. Chem. Phys. 8, 212–224.

    Article  Google Scholar 

  • Avrami, M. (1941) Kinetics of phase change. III. Granulations, phase change, and microstructure. J. Chem. Phys. 9, 177–184.

    Article  Google Scholar 

  • Beach, A. (1980) Retrogressive metamorphic processes in shear zones with special reference to the Lewisian complex. J. Struct. Geol. 2, 257–263.

    Article  Google Scholar 

  • Becker, R. (1940) On the formation of nuclei during precipitation. Proc. Phys. Soc. 52, 71–76.

    Article  Google Scholar 

  • Becker, R., and Döring, W. (1935) Kinetische Behandlung der Keimbildung in über- sättingten Dämpfen. Ann. Phys. Lpz.24, 719–752.

    Article  Google Scholar 

  • Bell, T., and Farnell, B. C. (1969) The isothermal decomposition of nitrogen austenite to bainite, in The Mechanism of Phase Transformations in Crystalline Solids. Monograph and Rept. Series No. 33, pp. 282–287. Institute of Metals, London.

    Google Scholar 

  • Bischoff, J. L. (1969) Temperature controls on aragonite-calcite transformation in aqueous solution. Amer. Mineral. 54, 149–155.

    Google Scholar 

  • Bischoff, J. L., and Fyfe, W. S. (1968) Catalysis, inhibition, and the calcite-aragonite problem: I. The aragonite-calcite transformation. Amer. J. Sci. 266, 65–79.

    Article  Google Scholar 

  • Blacic, J. D., and Christie, J. M. (1984) Plasticity and hydrolitic weakening of quartz single crystals. J. Geophys. Res. 89, 4223–4239.

    Article  Google Scholar 

  • Boehm, H. (1983) Modulated structures at phase transitions. Amer. Mineral. 68, 11–17.

    Google Scholar 

  • Boettcher, A. L., and Wyllie, P. J. (1967) Biaxial calcite inverted from aragonite. Amer. Mineral. 52, 1527–1529.

    Google Scholar 

  • Boland, J. N., and Liebermann, R. C. (1982) Mechanism of the olivine to spinel phase transformation in Ni2SiO4. Trans. Amer. Geophys. Union, 63, 431.

    Google Scholar 

  • Brady, J. B. (1983) Intergranular diffusion in metamorphic rocks. Amer. J. Sci. 283A, 181–200.

    Google Scholar 

  • Brar, N. S., and Schloessin, H. H. (1979) Effects of pressure, temperature, and grain size on the kinetics of the calcite → aragonite transformation. Can. J. Earth Sci. 16, 1402–1418.

    Article  Google Scholar 

  • Brar, N. S., and Schloessin, H. H. (1980) Nucleation and growth of aragonite in a calcite single crystal, Phase Transitions 1, 299–324.

    Article  Google Scholar 

  • Brodie, K. H., and Rutter, E. H. (1985) On the relationship between rock deformation and metamorphism, with special reference to the behavior of basic rocks, in Advances in Physical Geochemistry, Vol. 4, edited by A. B. Thompson and D. C. Rubie, pp. 138–179. Springer-Verlag, New York.

    Google Scholar 

  • Brown, A. M., and Ashby, M. F. (1980) Correlations for diffusion constants. Acta Metall. 28, 1085–1101.

    Article  Google Scholar 

  • Brown, W. H., Fyfe, W. S., and Turner, F. J. (1962) Aragonite in California glaucophane schists, and the kinetics of the aragonite-calcite transformation. J. Petrol. 3, 566–582.

    Google Scholar 

  • Cahn, J. W. (1956a) The kinetics of grain boundary nucleated reactions. Acta Metall. 4, 449–459.

    Article  Google Scholar 

  • Cahn, J. W. (1956b) Transformation kinetics during continuous cooling. Acta Metall. 4, 572–575.

    Article  Google Scholar 

  • Cahn, J. W. (1957) Nucleation on dislocations. Acta Metall. 5, 169–172.

    Article  Google Scholar 

  • Carlson, W. D. (1983) Aragonite-calcite nucleation kinetics: An application and extension of Avrami transformation theory. J. Geol. 91, 57–71.

    Article  Google Scholar 

  • Carlson, W. D., and Rosenfeld, J. L. (1981) Optical determination of topotactic aragonite-calcite growth kinetics: Metamorphic implications. J. Geol. 89, 615–638.

    Article  Google Scholar 

  • Carpenter, M. A., and Putnis, A. (1985) Cation order and disorder during crystal growth: Some implications for natural mineral assemblages, in Advances in Physical Geochemistry, Vol. 4, edited by A. B. Thompson and D. C. Rubie, pp. 1–26. Springer-Verlag, New York.

    Google Scholar 

  • Carter, R. E. (1961) Kinetic model for solid-state reactions. J. Chem. Phys. 34, 2010–2015.

    Article  Google Scholar 

  • Chaklader, A. C. D., and Roberts, A. L. (1961) Transformation of quartz to cristo- balite. J. Amer. Ceram. Soc. 44, 35–41.

    Article  Google Scholar 

  • Chaudron, G. (1954) Contribution à l’étude des réactions dans l’état solide cinétique de la transformation aragonite-calcite, in Reactivity of Solids 2nd. Int. Symp. on the Reactivity of Solids, pp. 9–20. Gothenburg.

    Google Scholar 

  • Christian, J. W. (1975) Transformations in Metals and Alloys. I. Equilibrium and General Kinetic Theory. Pergamon Press, Oxford.

    Google Scholar 

  • Christie, J. M., and Ord, A. (1980) Flow stress from microstructures of mylonites: Example and current assessment. J. Geophys. Res. 85, 6253–6262.

    Article  Google Scholar 

  • Dachille, F., and Roy, R. (1961) Influence of “displacive-shearing” stresses on the kinetics of reconstructive transformations effected by pressure in the range 0- 100,000 bars, in Reactivity of Solids, Proc. 4th Int. Symp. on the Reactivity of Solids, edited by J. H. de Boer, pp. 502–511. Elsevier, Amsterdam.

    Google Scholar 

  • Dandurand, J. L., Gout, R., and Schott, J. (1982) Experiments on phase transformation and chemical reactions of mechanically activated minerals by grinding: Petrogenetic implications. Tectonophysics 83, 365–386.

    Article  Google Scholar 

  • Davis, B. L., and Adams, L. H. (1964) X-ray diffraction evidence for a critical end point for cerium I and cerium II. J. Phys. Chem. Solids 25, 379–388.

    Article  Google Scholar 

  • Davis, B. L., and Adams, L. H. (1965) Kinetics of the calcite-aragonite transformation. J. Geophys. Res. 70, 433–441.

    Article  Google Scholar 

  • Doukhan, J. C., and Christie, J. M. (1982) Plastic deformation of sillimanite Al2SiO5 single crystals under confining pressure and TEM investigation of the induced defect structure. Bull. Minéral. 105, 583–589.

    Google Scholar 

  • Elliott, D. (1973) Diffusion flow laws in metamorphic rocks. Geol. Soc. Amer. Bull. 84, 2645–2664.

    Article  Google Scholar 

  • England, P. C., and Thomson, A. B. (1984) Pressure-temperature-time paths of regional metamorphism. I. Heat transfer during the evolution of regions of thickened continental crust. J. Petrol. 25, 894–928.

    Google Scholar 

  • Evans, B. W. (1965) Application of a reaction-rate method to the breakdown equilibria of muscovite and muscovite plus quartz. Amer. J. S ci. 263, 647–667.

    Article  Google Scholar 

  • Fisher, G. W. (1970) The application of ionic equilibria to metamorphic differentiation: An example. Contrib. Mineral. Petrol. 29, 91–103.

    Article  Google Scholar 

  • Fisher, G. W. (1978) Rate laws in metamorphism. Geochim. Cosmochim. Acta 42, 1035–1050.

    Article  Google Scholar 

  • Fletcher, R. C., and Hofmann, A. W. (1974) Simple models of diffusion and combined diffusion-infiltration metasomatism, in Geochemical Transport and Kinetics, edited by A. W. Hofmann, B. J. Giletti, H. S. Yoder, Jr., and R. A. Yund, pp. 243–259. Carnegie Institute, Washington.

    Google Scholar 

  • Freer, R. (1981) Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contrib. Mineral. Petrol. 76, 440–454.

    Article  Google Scholar 

  • Fyfe, W. S., and Bischoff, J. L. (1965) The calcite-aragonite problem, in Dolomitization and Limestone Diagenesis, Soc. Econ. Paleontol. Mineral. Spec. Publ. No. 13, edited by L. C. Pray, and R. C. Murray, pp. 3–13.

    Google Scholar 

  • Fyfe, W. S., Price, N. J., and Thompson, A. B. (1978) Fluids in the Earth’s Crust. Elsevier, Amsterdam.

    Google Scholar 

  • Fyfe, W. S., Turner, F. J., and Verhoogen, J. (1958) Metamorphic reactions and metamorphic facies. Geol. Soc. Amer. Mem. 73.

    Google Scholar 

  • Gallagher, K. J. (1965) The effect of particle size distribution on the kinetics of diffusion reactions in powders, in Reactivity of Solids, Proc. 5th Int. Symp. on the Reactivity of Solids, edited by G. M. Schwab, pp. 192–203. Elsevier, Amsterdam.

    Google Scholar 

  • Ganguly, J. (1982) Mg-Fe order-disorder in ferromagnesian silicates. II. Thermodynamics, kinetics, and geological applications, in Advances in Physical Geochemistry2, edited by S. K. Saxena, pp. 58–99. Springer-Verlag, New York.

    Google Scholar 

  • Giletti, B. J., and Nagy, K. L. (1981) Grain boundary diffusion of oxygen along lamellar boundaries in perthitic feldspars (abstract). Trans. Amer. Geophys. Union 62, 428.

    Google Scholar 

  • Gillet, P., and Madon, M. (1982) Un modèle de dislocations pour la transition aragonite ↔ calcite. Bull. Minéral, 105, 590–597.

    Google Scholar 

  • Gomes, W. (1961) Definition of rate constant and activation energy in solid state reactions. Nature 192, 865–866.

    Article  Google Scholar 

  • Gordon, T. M. (1971) Some observations on the formation of wollastonite from calcite and quartz. Can. J. Earth S ci. 8, 844–851.

    Article  Google Scholar 

  • Green, H. W. (1972) Metastable growth of coesite in highly strained quartz. J. Geophys. Res. 77, 2478–2482.

    Article  Google Scholar 

  • Greenwood, G. W. (1969) Particle coarsening, in The Mechanism of Phase Transformations in Crystalline Solids. Monograph and Rept. Series No. 33, pp. 103–110. Institute of Metals, London.

    Google Scholar 

  • Greenwood, H. J. (1963) The synthesis and stability of anthophyllite. J. Petrol. 4, 317–351.

    Google Scholar 

  • Griggs, D. T., Paterson, M. S., Heard, H. C., and Turner, F. J. (1960) Annealing recrystallization in calcite crystals and aggregates. Geol. Soc. Amer. Mem. 79, 21–37.

    Google Scholar 

  • Grimshaw, R. W., Hargreaves, J., and Roberts, A. L. (1956) Kinetics of the quartz transformation. Trans. Brit. Ceram. Soc. 55, 36–56.

    Google Scholar 

  • Haasen, P. (1978) Physical Metallurgy. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ham, F. S. (1958) Theory of diffusion-limited precipitation. J. Phys. Chem. Solids 6, 335–351.

    Article  Google Scholar 

  • Ham, F. S. (1959) Stress-assisted precipitation on dislocations. J. Appl. Phys. 30, 915–926.

    Article  Google Scholar 

  • Hamaya, N., and Akimoto, S. (1982) Experimental investigation on the mechanism of olivine → spinel transformation: Growth of single crystal spinel from single crystal olivine in Ni2SiO4, in High Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp. 373–389. Reidel, Dordrecht.

    Google Scholar 

  • Hanneman, R. E. (1969) Effect of high pressure on phase transformation rates, in Reactivity of Solids, Proc. 6th Int. Symp. on the Reactivity of Solids, edited by J. W. Mitchell, R. C. de Vries, R. W. Roberts, and P. Cannon, pp. 789–802. Wiley, New York.

    Google Scholar 

  • Hart, E. W. (1957) On the role of dislocations in bulk diffusion. Acta Metall. 5, 597.

    Article  Google Scholar 

  • Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamics of rock forming minerals. Amer. J. Sci.278A 1–229.

    Google Scholar 

  • Hobbs, B. E. (1981) The influence of metamorphic environment upon the deformation of minerals. Tectonophysics 78, 335–383.

    Article  Google Scholar 

  • Holdaway, M. J. (1971) Stability of andalusite and the aluminum silicate phase diagram. Amer. J. Sci. 27197–131.

    Article  Google Scholar 

  • Honda, K., and Sato, M. (1954) On the theory of transformation stress, in Reactivity of Solids Proc. 2nd Int. Symp. on the Reactivity of Solids, pp. 847–857. Gothenburg.

    Google Scholar 

  • Hornstra, J. (1960) Dislocations, stacking faults and twins in the spinel structure. J. Phys. Chem. Solids 15311–323.

    Article  Google Scholar 

  • Hulbert, S. F., Brosnan, D. A., and Smoak, R. H. (1969) Kinetics and mechanism of the reaction between MgO and Cr2O3, in Reactivity of Solids, Proc. 6th Int. Symp. on the Reactivity of Solids, edited by J. W. Mitchell, R. C. de Vries, R. W. Roberts, and P. Cannon, pp. 573–584. Wiley, New York.

    Google Scholar 

  • Ildefonse, J. P., and Gabis, V. (1976) Experimental study of silica diffusion during metasomatic reactions in the presence of water at 550°C and 1000 bars. Geochim. Cosmochim. Acta 40297–303.

    Article  Google Scholar 

  • Irving, A. J., and Wyllie, P. J. (1975) Subsolidus and melting relationships for calcite, magnesite and the join CaCO3-MgCO3 to 36 kb. Geochim. Cosmochim. Acta 39 35–53.

    Google Scholar 

  • Jander, W. (1927) Reaktionen im festen Zustande bei höheren Temperaturen. Z. Anorg. Allg. Chem. 1631–30.

    Article  Google Scholar 

  • Joesten, R. (1983) Grain growth and grain-boundary diffusion in quartz from the Christmas Mountains (Texas) contact aureole. Amer. J. Sci. 283A233–254.

    Google Scholar 

  • Johannes, W., and Puhan, D. (1971) The calcite-aragonite transition, reinvestigated. Contrib. Mineral. Petrol. 3128–38.

    Article  Google Scholar 

  • Johnson, W. A., and Mehl, R. F. (1939) Reaction kinetics in processes of nucleation and growth. Trans. Amer. Inst. Min. Metall. Engrs. 135416–458.

    Google Scholar 

  • Jones, K. A., and Galwey, A. K. (1966) Size distribution, composition and growth kinetics of garnet crystals in some metamorphic rocks from the west of Ireland. J. Geol. Soc. London 12229–44.

    Article  Google Scholar 

  • Jones, K. A., Wolfe, M. J., and Galwey, A. K. (1975) A theoretical consideration of the kinetics of calcite recrystallization produced by two basalt dykes in Co. Antrim, Northern Ireland. Contrib. Mineral. Petrol. 51, 283–296.

    Article  Google Scholar 

  • Kapur, P. C. (1973) Kinetics of solid state reactions of particulate ensembles with size distributions. J. Amer. Ceram. Soc. 56, 79–81.

    Article  Google Scholar 

  • Kasahara, J., and Tsukahara, H. (1971) Experimental measurements of reaction rate at the phase change of nickel olivine to nickel spinel. J. Phys. Earth 1979–88.

    Article  Google Scholar 

  • Kerrick, D. M. (1972) Experimental determination of muscovite + quartz stability with \({P_{{H_2}}}_O\) Ptotal. Amer. J. Sci. 272946–958.

    Article  Google Scholar 

  • Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976) Introduction to Ceramics. Wiley, New York.

    Google Scholar 

  • Kittl, J. E., and Cabo, A. (1969) The β’ → ζ0transformation in the AgZn system, inThe Mechanism of Phase Transformations in Crystalline Solids, Monograph and Rept. Series No. 33, pp. 260–265. Institute of Metals, London.

    Google Scholar 

  • Kohlstedt, D. L., Nichols, H. P. K., and Hornack, P. (1980) The effect of pressure on the rate of dislocation recovery in olivine. J. Geophys. Res. 853122–3130.

    Article  Google Scholar 

  • Koons, P. O., and Rubie, D. C. (1983) The effect of deformation on the metamorphic evolution of quartz diorite in the eclogite facies (abstract). Terra Cognita 3 186.

    Google Scholar 

  • Kretz, R. (1966) Grain size distributions for certain metamorphic minerals in relation to nucleation and growth. J. Geol. 74147–174.

    Article  Google Scholar 

  • Kridelbaugh, S. J. (1973) The kinetics of the reaction: calcite + quartz = wollas- tonite + carbon dioxide at elevated temperatures and pressures. Amer. J. Sci.273 757–777.

    Article  Google Scholar 

  • Kunzler, R. H., and Goodall, H. G. (1970) The aragonite-calcite transformation: a problem in the kinetics of a solid-solid reaction. Amer. J. Sci. 269360–391.

    Article  Google Scholar 

  • Lasaga, A. C. (1981) Rate laws of chemical reactions, in Kinetics of Geochemical Processes. Reviews in Mineralogy, 8, edited by A. C. Lasaga and R. J. Kirkpatrick. Mineral. Soc. America, 1–68.

    Google Scholar 

  • Lasaga, A. C., and Kirkpatrick, R. J. (editors) (1981) Kinetics of Geochemical Processes. Reviews in Mineralogy, 8. Mineral Soc. America.

    Google Scholar 

  • Loomis, T. P. (1979) A natural example of metastable reactions involving garnet and sillimanite. J. Petrol. 20271–292.

    Google Scholar 

  • Martin, B., and Fyfe, W. S. (1970) Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization. Chem. Geol. 6, 185–202.

    Article  Google Scholar 

  • Martin, J. W., and Doherty, R. D. (1976) Stability of Microstructure in Metallic Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Matthews, A. (1980) Influences of kinetics and mechanism in metamorphism: A study of albite crystallization. Geochim. Cosmochim. Acta 44387–402.

    Article  Google Scholar 

  • Mukherjee, T., and Sellars, C. M. (1969) Influence of concurrent deformation on coarsening of carbides, in The Mechanism of Phase Transformation in Crystalline Solids, Monograph and Rept. Series No. 33, pp. 122–124. Institute of Metals, London.

    Google Scholar 

  • Nicholson, R. B. (1970) Nucleation at imperfections, in Phase Transformations, pp. 269–312. American Society for Metals, Metals Park, OH.

    Google Scholar 

  • Nicolas, A., and Poirier, J. P. (1976) Crystalline Plasticity and Solid State Flow in Metamorphic Rocks. Wiley, London.

    Google Scholar 

  • Nitkiewicz, A. M., Kerrick, D. M., and Hemingway, B. S. (1983) The effect of particle size on the enthalpy of solution of quartz: Implications for phase equilibria and solution calorimetry. Geol. Soc. Amer. Abstr. Progs. 15653.

    Google Scholar 

  • Petrovich, R. (1981a) Kinetics of dissolution of mechanically comminuted rock forming oxides and silicates. I. Deformation and dissolution of quartz under laboratory conditions. Geochim. Cosmochim. Acta 451665–1674.

    Article  Google Scholar 

  • Petrovich, R. (1981b) Kinetics of dissolution of mechanically comminuted rock forming oxides and silicates. II. Deformation and dissolution of oxides and silicates in the laboratory and at the earth’s surface. Geochim. Cosmochim. Acta 451675–1686.

    Article  Google Scholar 

  • Poirier, J. P. (1981a) Martensitic olivine-spinel transformation and plasticity of the mantle transition zone, in Anelasticity in the Earth edited by F. D. Stacey, M. S. Paterson, and A. Nicolas, pp. 113–117. Geodynamics Series 4. American Geophysics Union and Geological Society of America.

    Chapter  Google Scholar 

  • Poirier, J. P. (1981b) On the kinetics of the olivine-spinel transition. Phys. Earth. Planet. Int. 26, 179–187.

    Article  Google Scholar 

  • Poirier, J. P. (1982a) The kinetics of martensitic olivine γ-spinel transition and its dependence on material and experimental parameters, in High Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp. 361–371. Reidel, Dordrecht.

    Google Scholar 

  • Poirier, J. P. (1982b) On transformation plasticity. J. Geophys Res. 87, 6791–6797.

    Article  Google Scholar 

  • Porter, D. A., and Easterling, K. E. (1981) Phase Transformations in Metals and Alloys. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Putnis, A., and McConnell, J. D. C. (1980) Principles of Mineral Behaviour. Blackwell, Oxford.

    Google Scholar 

  • Rao, M. S. (1973) Kinetics and mechanism of transformation of aragonite to calcite. Indian J. Chem. 11, 280–283.

    Google Scholar 

  • Ridley, J. (1985) The effect of reaction enthalpy on the progress of a metamorphic reaction, in Advances in Physical Geochemistry, Vol. 4, edited by A. B. Thompson and D. C. Rubie, pp. 80–97. Springer-Verlag, New York.

    Google Scholar 

  • Rubie, D. C. (1983) Reaction-enhanced ductility: The role of solid-solid univariant reactions in deformation of the crust and mantle. Tectonophysics 96, 331–352.

    Article  Google Scholar 

  • Rubie, D. C. (1984) The olivine → spinel transformation and the rheology of subducting lithosphere. Nature, 308, 505–508.

    Article  Google Scholar 

  • Russell, K. C. (1970) Nucleation in solids, in Phase Transformations, pp. 219–268. American Society for Metals, Metals Park, OH.

    Google Scholar 

  • Rutter, E. H. (1976) The kinetics of rock deformation by pressure solution. Phil. Trans. Roy. Soc. London 283A, 203–219.

    Google Scholar 

  • Rutter, E. H. (1983) Pressure solution in nature, theory and experiment. J. Geol. Soc. London 140, 725–740.

    Article  Google Scholar 

  • Rutter, E. H. and Brodie, K. H. (1985) The permeation of water into hydrating shear zones, in Advances in Physical Geochemistry, Vol. 4, edited by A. B. Thompson and D. C. Rubie, pp. 242–250. Springer-Verlag, New York.

    Google Scholar 

  • Sammis, C. G., and Dein, J. L. (1974) On the possibility of transformation superplasticity in the Earth’s mantle. J. Geophys. Res. 79, 2961–2965.

    Article  Google Scholar 

  • Sammis, C. G., Smith, J. C., and Schubert, G. (1981) A critical assessment of estimation methods for activation volume. J. Geophys. Res. 86, 10707–10718.

    Article  Google Scholar 

  • Schmalzried, H. (1974) Solid State Reactions. Academic Press, New York.

    Google Scholar 

  • Schmalzried, H. (1978) Reactivity and point defects of double oxides with emphasis on simple silicates. Phys. Chem. Minerals 2, 279–294.

    Article  Google Scholar 

  • Schmid, S. M., Boland, J. N., and Paterson, M. S. (1977) Superplastic flow in finegrained limestone. Tectonophysics 43, 257–291.

    Article  Google Scholar 

  • Schramke, J. A., Kerrick, D. M., and Lasaga, A. C. (1983) Irreversible thermodynamics applied to the reaction: muscovite + quartz ↔ andalusite + sanidine + water. Geol. Soc. Amer. Abstr. Progs. 15, 681.

    Google Scholar 

  • Servi, I. S., and Turnbull, D. (1966) Thermodynamics and kinetics of precipitation in the copper—cobalt system. Acta Metall. 14 161–169.

    Article  Google Scholar 

  • Spry, A. (1969) Metamorphic Textures. Pergamon Press, Oxford.

    Google Scholar 

  • Stacey, F. D. (1977) Physics of the Earth. Wiley, New York.

    Google Scholar 

  • Stumpf, W. E., and Sellars, C. M. (1969) Effect of matrix structure on carbide coarsening and transformations, in The Mechanism of Phase Transformations in Crystalline Solids, Monograph and Rept. SeriesNo. 33, pp. 120–122. Institute of Metals, London.

    Google Scholar 

  • Sung, C. M. (1979) Kinetics of the olivine → spinel transition under high pressure and temperature: Experimental results and geophysical implications, in High Pressure Science and Technology, Vol. 2, edited by K. D. Timmerhaus and M. S. Barber, pp. 31–42. Plenum Press, New York.

    Google Scholar 

  • Tanner, L. E., and Servi, I. S. (1966) Direct observations of size, distribution and morphology of precipitates in copper-cobalt alloys. Acta Metall. 14 231–234.

    Article  Google Scholar 

  • Tanner, S. B., Kerrick, D. M., and Lasaga, A. C. (1983) The kinetics and mechanisms of the reaction: calcite + quartz ⇌ wollastonite + carbon dioxide. Geol. Soc. Amer. Abstr. Progs. 15, 704.

    Google Scholar 

  • Thompson, A. B. (1970) A note on the kaolinite-pyrophyllite equilibrium. Amer. J. Sci. 268454–458.

    Article  Google Scholar 

  • Thompson, A. B. (1971) Analcite-albite equilibria at low temperatures. Amer. J. Sci. 27179–92.

    Article  Google Scholar 

  • Tolokonnikova, L. I., Topor, N. D., Kadenatsi, B. M., and Solov’yeva, T. B. (1974) Kinetics of the aragonite-calcite transition studied by a dilatometric method on a derivatograph. Zh. Fiz. Khim. 482616.

    Google Scholar 

  • Tsuzuki, Y., and Mizutani, S. (1971) A study of rock alteration process based on kinetics of hydrothermal alteration. Contrib. Mineral. Petrol. 30, 15–33.

    Article  Google Scholar 

  • Tullis, J. A., Shelton, G. L., and Yund, R. A. (1979) Pressure dependences of rock strength: Implications for hydrolytic weakening. Bull. Minéral. 102110–114.

    Google Scholar 

  • Tullis, J. A., and Yund, R. A. (1980) Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock. J. Struct. Geol. 2, 439–451.

    Article  Google Scholar 

  • Tullis, J. A., and Yund, R. A. (1982) Grain growth kinetics of quartz and calcite aggregates. J. Geol. 90301–318.

    Article  Google Scholar 

  • Turnbull, D. (1956) Phase changes. Solid State Phys. 3, 225–306.

    Article  Google Scholar 

  • Turnbull, D., and Fisher, J. C. (1949) Rate of nucleation in condensed systems. J. Chem. Phys. 1771–73.

    Article  Google Scholar 

  • Vaughan, P. J., and Coe, R. S. (1981) Creep mechanisms in Mg2GeO4: Effects of a phase change. J. Geophys. Res. 86, 389–404.

    Article  Google Scholar 

  • Vernon, R. H. (1976) Metamorphic Processes. George Allen and Unwin, London.

    Google Scholar 

  • Volmer, M., and Weber, A. (1926) Keimbildung in ubersaettigten Gebilden. Z. Phys. Chem. 119277–301.

    Google Scholar 

  • Wegner, W. W., and Ernst, W. G. (1983) Experimentally determined hydration and dehydration reaction rates in the system MgO-SiO2-H2O. Amer. J. Sci. 283A, 151–180.

    Google Scholar 

  • Wenk, H. R., Venkitasubramanyan, C. S., and Baker, D. W. (1973) Preferred orientation in experimentally deformed limestone. Contrib. Mineral. Petrol. 3881–114.

    Article  Google Scholar 

  • White, S. H., and Knipe, R. J. (1978) Transformation- and reaction-enhanced ductility in rocks. J. Geol. Soc. London 135513–516.

    Article  Google Scholar 

  • Wood, B. J., and Walther, J. V. (1983) Rates of hydrothermal reactions. Science 222, 413–415.

    Article  Google Scholar 

  • Yardley, B. W. D. (1977) The nature and significance of the mechanism of sillimanite growth in the Connemara schists, Ireland. Contrib. Mineral. Petrol. 65, 53–58.

    Article  Google Scholar 

  • Yardley, B. W. D. (1983) Heat of reaction—the key to metamorphic kinetics? (abstract). J. Geol. Soc. London 140162.

    Article  Google Scholar 

  • Yund, R. A. (1983) Diffusion in feldspars, in Feldspar Mineralogy. Reviews in Mineralogy, 2, edited by P. H. Ribbe. Mineral. Soc. America, 203–222.

    Google Scholar 

  • Yund, R. A. (in press) Alkali feldspar exsolution: Kinetics and dependence on alkali diffusion, in Feldspar and Feldspathoids; Structures, Properties and Occurrences, edited by W. L. Brown. Reidel Publishing Co.

    Google Scholar 

  • Yund, R. A., and Hall, H. T. (1970) Kinetics and mechanism of pyrite exsolution from pyrrhotite. J. Petrol. 11381–404.

    Google Scholar 

  • Yund, R. A., and Tullis, J. (1980) The effect of water, pressure, and strain on Al/Si order-disorder kinetics in feldspar. Contrib. Mineral. Petrol. 72297–302.

    Article  Google Scholar 

  • Yund, R. A., McCallister, R. H., and Savin, S. M. (1972) An experimental study of nepheline-kalsilite exsolution. J. Petrol. 13255–272.

    Google Scholar 

  • Yund, R. A., Smith, B. M., and Tullis, J. (1981) Dislocation-assisted diffusion of oxygen in albite. Phys. Chem. Minerals 7185–189.

    Article  Google Scholar 

  • Zeto, R. J., and Roy, R. (1969) Kinetics of the GeO2 (quartz) → GeO2 (rutile) transformation at pressures to 30 kbar, in Reactivity of Solids, Proc. 6th Int. Symp. on the Reactivity of Solids, edited by J. W. Mitchell, R. C. de Vries, R. W. Roberts, and P. Cannon, pp. 803–815. Wiley, New York.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Rubie, D.C., Thompson, A.B. (1985). Kinetics of Metamorphic Reactions at Elevated Temperatures and Pressures: An Appraisal of Available Experimental Data. In: Thompson, A.B., Rubie, D.C. (eds) Metamorphic Reactions. Advances in Physical Geochemistry, vol 4. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-5066-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-5066-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9548-8

  • Online ISBN: 978-1-4612-5066-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics