Advertisement

General Duality Principle by Means of Perturbed Problems and Conjugate Functionals

  • Eberhard Zeidler

Abstract

In Section 37.10 we observed the following general principle for linear optimization problems in ℝ N :

The consistency of (P) and (P*) implies that (P) and (P*) are solvable.

Keywords

Minimal Surface Dual Problem Dual Pair Convex Space Side Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to the Literature

  1. Fenchel, W. (1951): Convex Cones, Sets and Functions. Princeton University Press, Princeton (Lecture Notes).Google Scholar
  2. Rockafellar, R. (1967): Duality and stability in extremum problems involving convex functions. Pacific J. Math. 21 (167-187).MathSciNetCrossRefMATHGoogle Scholar
  3. Göpfert, A. (1973): Mathematische Optimierung in allgemeinen Vektorraumen. Teubner, Leipzig.Google Scholar
  4. Ekeland, I. and Temam, R. (1974): Analyse convexe et problemes variationnels. Dunod, Paris. (English edition: North-Holland, Amsterdam, 1976.)Google Scholar
  5. Barbu, V., and Precupanu, T. (1978): Convexity and Optimization in Banach Spaces. Ed. Acad., Bucuresti; Sijthoff & Noordhoff, Leyden.Google Scholar
  6. Collatz, L. and Krabs, W. (1973): Approximationstheorie. Teubner, Stuttgart.MATHGoogle Scholar
  7. Göpfert, A. (1973): Mathematische Optimierung in allgemeinen Vektorräumen. Teubner, Leipzig.MATHGoogle Scholar
  8. Krabs, W. (1975): Optimierung und Approximation. Teubner, Stuttgart. (English edition: Optimization and Approximation. Wiley, New York, 1979.)Google Scholar
  9. Rockafellar, R. (1975): Existence theorems for general control problems of Bolza and Lagrange. Adv. in Math. 15 (312-337).MathSciNetCrossRefMATHGoogle Scholar
  10. Klötzler, R. (1978): A generalization of the duality in optimal control and some numerical conclusions. In: IFIP Conference (1978a), Part 1, 313 - 320.Google Scholar
  11. Klötzler, R. (1979): A priori Abschatzungen von Optimalwerten zu Steuerungsproblemen. I, II. Math. Operationsforsch. Statist. Ser. Optim. 10 (101-110, 335-344).Google Scholar
  12. Klötzler, R. (1983): Globale Optimierung in der Steuerungstheorie. ZAMM 63 (305-312).CrossRefGoogle Scholar
  13. Nitsche, J. (1975): Vorlesungen uber Minimalflachen. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  14. Courant, R. (1950): Dirichlet's Principle, Conformal Mapping and Minimal Surfaces. Interscience, New York.Google Scholar
  15. Gilbarg, D. and Trudinger, N. (1977): Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin (second enlarged edition, 1984).CrossRefMATHGoogle Scholar
  16. Fučik, S., Nečas, J., and Souček, V. (1977): Einführung in die Variationsrechnung. Teubner, Leipzig.MATHGoogle Scholar
  17. Tromba, A. (1977): On the Number of Simply Connected Minimal Surfaces Spanning a Curve. Memoirs of the American Mathematical Society, Vol. 194. American Mathematical Society, Providence, RI.Google Scholar
  18. Böhme, R. (1981/1982): New results on the classical problem of Plateau on the existence of many solutions. Séminaire Bourbaki No. 579Google Scholar
  19. Fomenko, A. (1982): Variational Methods in Topology. Nauka, Moscow (Russian).MATHGoogle Scholar
  20. Hildebrandt, S. (1983): Partielle Differentialgleichungen und Differentialgeometrie. Jahresbericht der Deutschen Mathematikervereinigung 85 (129-145).MathSciNetMATHGoogle Scholar
  21. Almgren, F. (1984): Q-valued Functions Minimizing Dirichlet's Integral and the Regularity of Area Minimizing Rectifiable Currents up to Codimension Two. (monograph to appear).Google Scholar
  22. Finn, R. (1984): Equilibrium Capillary Surfaces. Springer-Verlag, New York (to appear).Google Scholar
  23. Lions, P. (1982): Generalized solutions of Hamilton-Jacobi equations. Pitman, Londo.MATHGoogle Scholar
  24. Crandall, M. and Lions, P. (1983): Viscosity solutions of Hamilton-Jacobi equations Transact. Amer. Math. Soc. 277 (1-42).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Eberhard Zeidler
    • 1
  1. 1.Sektion MathematikLeipzigGerman Democratic Republic

Personalised recommendations