Self Education after Mismatched HLA Haploidentical Bone Marrow Transplantation

  • J. P. De Villartay
  • A. Fischer
  • C. Griscelli
Chapter
Part of the Experimental Biology and Medicine book series (EBAM, volume 9)

Abstract

Animal models of major histocompatibility complex (MHC) incompatible bone marrow transplantation have gained considerable insight into the understanding of self education mechanism. It has been shown that the Ia molecules expressed on intrathymic cells inprint the self recognition pattern of engrafted MHC incompatible T cells and thus tolerance to host cells (1,2,3). The origin of the Ia positive cells present into the thymus is only dependent from the dose of irradiation delivered to the host (4,5). In the thymus of 900 rads-irradiated mice, one finds host-derived Ia+ cells resulting in self tolerance to host Ia antigen by engrafted T cells whereas in the thymus of 1,200 rads-irradiated mice there are firstly host Ia bearing cells, then bone marrow derived, donor type Ia+ cells which dictate both host and donor Ia to be viewed as self (4,5).

Keywords

Influenza Cyclosporin Thymidine Quinacrine Agammaglobulinemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ZINKERNAGEL R.M., CALLAHAN G. N., ALTHAGE A., COOPER S., KLEIN P. A., KLEIN J. J Exp Med 147, 882–96 (1978)PubMedCrossRefGoogle Scholar
  2. 2.
    ZINKERNAGEL R. M. Immunol Rev 42, 225–70 (1978)CrossRefGoogle Scholar
  3. 3.
    FINK P. J. and BEVAN M. J J Exp Med 148, 766–75 (1978)CrossRefGoogle Scholar
  4. 4.
    LONGO D. L. and SCHWARTZ R. H. Nature (Lond) 287, 44–46 (1980)CrossRefGoogle Scholar
  5. 5.
    LONGO D. L. and DAVIS M. J Immunol 130, 2525–7 (1983)PubMedGoogle Scholar
  6. 6.
    KENNY A.B. and HITZIG W. H. Eur J Paediatr 131, 155–77 (1979)CrossRefGoogle Scholar
  7. 7.
    FISCHER A., DURANDY A., DE VILLARTAY J. P., et al. Transpl Proc. in Press (1984)Google Scholar
  8. 8.
    REISNER Y., KAPOOR N., KIRKPATRICK D. et al. Blood 61, 341–8 (1983)PubMedGoogle Scholar
  9. 9.
    REIMERZ E. L., GEHA R., RAPPEPORT J. M. et al. Proc Natl Acad Sci USA 79, 6047–51 (1982)CrossRefGoogle Scholar
  10. 10.
    TUTSCHKA P.J., HESS A. D., BESCHORNER W. E. et al. Transplantation 32, 32–5 (1981)Google Scholar
  11. 11.
    DEEG H. J., STORB R., WEIDEN P. L. et al Transplantation 34, 30–4 (1982)PubMedCrossRefGoogle Scholar
  12. 12.
    HESS A. D. and TUTSCHKA P. J. J Immunol 124, 2601–8 (1980)PubMedGoogle Scholar
  13. 13.
    LAMB J. R. and FELDMANN M. Nature 300, 456–3 (1982)PubMedCrossRefGoogle Scholar
  14. 14.
    FISCHER A., BEVERLEY P. C. L., FELDMAN M. Nature (Lond) 294, 166–68 (1981)CrossRefGoogle Scholar
  15. 15.
    FISCHER A., STERKERS G., CHARRON D., et al. Eur J Immunol in Press (1984)Google Scholar
  16. 16.
    CHU E., UMETSU D., ROSEN F. et al. J Clin Invest 72, 1124–29 (1983)PubMedCrossRefGoogle Scholar
  17. 17.
    BRADLEY S. M., KRUISBEEK A. M., SINGER A. J Exp Med 156, 1650–64 (1982)PubMedCrossRefGoogle Scholar
  18. 18.
    CHENEY R., SPRENT J. Abstract F-3 10th International Congress of Transplantation. Minneapolis 1984Google Scholar
  19. 19.
    BRADLEY S. M., MORRISSEY P. J., SHARROW S. O. et al J Exp Med 155, 1638–52 (1982)PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1985

Authors and Affiliations

  • J. P. De Villartay
    • 1
  • A. Fischer
    • 1
  • C. Griscelli
    • 1
  1. 1.Unité d’Immuno HématologieHôpital des Enfants Malades — INSERM U 132ParisFrance

Personalised recommendations