Skip to main content

Viruses with Ambisense RNA Genomes

  • Chapter
Concepts in Viral Pathogenesis II

Abstract

Viruses are grouped on the basis of the type of their genetic information (RNA or DNA), its form (single-stranded, or double-stranded), and the procedures employed for virus replication [1]. A variety of strategies of replication are used by viruses to reproduce in cells. For the single-stranded RNA genome viruses (other than members of the Retroviridae which have a DNA intermediate in the replication cycle), the strategy involves either (a) the synthesis of proteins by translation of the viral RNA (and in some cases derivatives of that sequence that are made during the replication process), i.e., the viral-sense RNAs function as mRNA species (positive-stranded viruses); or (b) the transcription of viral-complementary mRNA species from the genome, i.e., viral RNAs do not function as mRNA species (negative-stranded viruses). For all the negative-stranded viruses, the synthesis of mRNA species at the onset of infection is achieved by viral-coded enzymes that are present in the infecting virus particles. Double-stranded RNA viruses (e.g., members of the Reoviridae) also use a virion polymerase to copy into mRNA one strand of each duplex of genomic RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. l. Matdewa REF., (1982) Classification audnomenclature of viruses. Intervirol l7:l–200

    Article  Google Scholar 

  2. Rawls WE, Leuog W-C., (1979) Areoavirumes.In Frankael-Conrat H, Wagner RR (eds) Comprehensive Virology vol l4 Plenum Press, New York, p 157

    Chapter  Google Scholar 

  3. Bishop DHL., Compaus RW (1985) BBiochemistry of arenaviruses. Curr Top Microbiol Immunol ll4:153–l75

    PubMed  Google Scholar 

  4. Casal J., (1975) Areuuviruaes. Yale J Biol Med48:1l5–l40

    Google Scholar 

  5. Oldstone MBA, Ahmed R, Buchmeier MJ, Blount P, Tishon A, (1985) Perturbation of differentiated functions during viral infection in vivo 1. Relationship of lymphocytic choriomeningitis virus and host strains to growth hormone deficiency. Virology 142: 150–174

    Article  Google Scholar 

  6. Rawls WE, Chan MA, Gee SR (1981) Mechanisms of persistence in arenaviruses infections: A brief review. Can J Microbiol 27: 560–574

    Article  Google Scholar 

  7. Leung W-C. Rawls WE (1977) `Virion-associated ribosomes are not required for the replication of Pichinde virus. Virology 81: 174–176

    Google Scholar 

  8. Vezza AC, Bishop DHL, (!977) Recombination between temperature-sensitive mutants of the arenavirus Pichinde. J Virol24:712–7\5

    Google Scholar 

  9. Romanowski V, Bishop DHL (1983) The formation of arenaviruses that are genetically diploid. Virology 126: 87–95

    Article  CAS  PubMed  Google Scholar 

  10. Vezza AC, Cash P, Jahrling P, Eddy G, Bishop DHL (1980) Arenavirus recombination: The formation of recombinants between prototype Pichinde and Pichinde Munchique viruses and evidence that arenavirus S RNA codes for N polypeptide. Virology 106: 250–260

    Article  CAS  Google Scholar 

  11. Harnish DG, Dimock K, Bishop DHL, Rawls WE (1983) Gene mapping in Pichinde virus: Assignment of viral polypeptides to genomic L and S RNAs. J Virol 46: 638–641

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Auperin DD, Romanowski V, Galinski M, Bishop DHL (1984) Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52: 897–904

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Auperin DD, Romanowski V, Galinski M, Bishop DHL (1984) Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52: 897–904

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Auperin DD, Romanowski V, Galinski M, Bishop DHL (1984) Sequencing studies of Pichinde arenavirus S RNA indicate a novel coding strategy, an ambisense viral S RNA. J Virol 52: 897–904

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Bishop DHL, Gould KG, Akashi H, Clerx-van Haaster CM (1982) The complete sequence and coding content of snowshoe hare bunyavirus small (S) viral RNA species. Nucleic Acids Res 10: 3703–3713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Eshita Y, Bishop DHL (1984) The complete sequence of the M RNA of snowshoe hare bunyavirus reveals the presence of internal hydrophobic domains in the viral glycoproteins Virology 137: 227–240

    Article  CAS  PubMed  Google Scholar 

  17. Clerx-van Haaster CM, Akashi H, Auperin DD, Bishop DHL (1982) Nucleotide sequence analyses and predicted coding of bunyavirus genome RNA species. J Virol 41: 119–128

    Google Scholar 

  18. Clerx-van Haaster CM, Akashi H, Auperin DD, Bishop DHL (1982) Nucleotide sequence analyses and predicted coding of bunyavirus genome RNA species. J Virol 41: 119–128

    Google Scholar 

  19. Bouloy M, Colbere F, Krams-Ozden S, Vialat P, Garapin AC, Hannoun C (1975) Activité RNA polymerasique associée à un Bunyavirus (Lumbo). C R Séances Acad Sci 280D: 213–215

    CAS  Google Scholar 

  20. Ihara T, Akashi H, Bishop DHL (1984) Novel coding strategy (ambisense genomic RNA) reveled by sequence analyses of Punta Toro phlebovirus S RNA. Virology 136: 293–306

    Article  CAS  PubMed  Google Scholar 

  21. Ihara T, Matsuura Y, Bishop DHL (1985) Analyses of the mRNA transcription processes of Punta Toro phlebovirus (Bunyaviridae). Virology (submitted)

    Google Scholar 

  22. Ihara T, Smith J, Dalrymple JM, Bishop DHL (1985) Complete sequences of the glycoprotein and M RNA of Punta Toro phlebovirus compared to those of Rift valley fever virus. Virology 144: 246–259

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bishop, D.H.L. (1986). Viruses with Ambisense RNA Genomes. In: Notkins, A.L., Oldstone, M.B.A. (eds) Concepts in Viral Pathogenesis II. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4958-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4958-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9375-0

  • Online ISBN: 978-1-4612-4958-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics