Skip to main content

Pathophysiologic Significance

  • Chapter
Diabetes and Protein Glycosylation

Abstract

The amino-terminal of the P chain of hemoglobin, to which glucose attaches, is also a site where organic phosphates bind. 2,3-Diphos- phoglycerate (2,3-DPG), an important intermediate in red cell glycolysis, influences the affinity of hemoglobin for oxygen through its ability to bind to β chain residues of deoxyhemoglobin. Addition of organic phosphate decreases the oxygen affinity of hemoglobin, whereas removal of organic phosphate increases the oxygen affinities of Hb A and Hb A1c. The availability of this site for interaction with 2,3-DPG is compromised when it is covalently linked to glucose.1 Hence, Hb A1c exhibits greater oxygen affinity than Hb A in the presence of 2,3-DPG.2–4 Correspondent with the increase in the level of Hb A1c in the red cells of diabetic patients, the oxygen affinity of these cells in the presence of 2,3-DPG is slightly greater than that of red cells from nondiabetic subjects.5 This difference could be explained on the basis of the interference presented by the NH2-terminal glucose of Hb A1c to the binding of 2,3-DPG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bunn HF, Briehl RW: The interaction of 2,3-diphosphoglycerate with various human hemoglobins. J Clin Invest 1970;49:1088–1095.

    PubMed  CAS  Google Scholar 

  2. Ditzel J, Anderson H, Peters ND: Oxygen affinity of hemoglobin and red cell 2,3-diphosphoglycerate in childhood diabetes. Acta Pediatr Scand 1975;64:355–361.

    CAS  Google Scholar 

  3. Farris L, Wajcman H, Jones RT, et al: Functional properties of hemoglobin Alc. Clin Res 1977;25:115A.

    Google Scholar 

  4. McDonald MJ, Bleichman M, Bunn HF, et al: Functional properties of the glycosylated minor components of human adult hemoglobin. J Biol Chem 1979;254:702–707.

    PubMed  CAS  Google Scholar 

  5. Arturson G, Garby L, Robert M, et al: Oxygen affinity of whole blood in vivo and under standard conditions in control subjects with diabetes mellitus. Second J Clin Lab Invest 1974;34:19–22.

    CAS  Google Scholar 

  6. Ditzel J, Standi E: The problem of tissue oxygenation in diabetes mellitus. Acta Med Scand 1978; suppl 578:59–68.

    Google Scholar 

  7. Ditzel J, Nielsen NV, Kjaergaard JJ: Hemoglobin A1c and red cell oxygen release capacity in relation to early retinal changes in newly discovered overt and chemical diabetes. Metabolism 1979;28(suppl 1):440–447.

    PubMed  CAS  Google Scholar 

  8. Ditzel J: Changes in red cell oxygen release capacity in diabetes mellitus. Fed Proc 1977;38:2484–2488.

    Google Scholar 

  9. Ditzel J: Affinity hypoxia as a pathogenic factor of microangiopathy with particular reference to diabetic retinopathy. Acta Endocrinol 1980;94:39–55.

    Google Scholar 

  10. Ditzel J, Daugaard P, Anderson H: Oxygen affinity of haemoglobin and red cell 2,3 diphosphoglycerate in childhood diabetes. Diabetologia 1974; 10:363.

    Google Scholar 

  11. Ditzel J, Jaeger P, Standi E: An adverse effect of insulin on the oxygen release capacity of red blood cells in nonacidotic diabetes. Metabolism 1978;27:929–934.

    Google Scholar 

  12. Standi E, Kolb HJ: 2,3-Diphosphoglycerate fluctuations in erythrocytes reflecting pronounced blood glucose variance: In vivo and in vitro studies in normal, diabetic and hypoglycemic subjects. Diabetologia 1973;9:461–466.

    Google Scholar 

  13. Ditzel J, Kawahara R, Mourits-Andersen T, et al: Changes in blood glucose, glycosylated hemoglobin and hemoglobin-oxygen affinity following meals in diabetic children. Eur J Pediatr 1981;137:171–174.

    PubMed  CAS  Google Scholar 

  14. Samaja M, Melotti D, Carenini A, et al: Glycosylated haemoglobins and the oxygen affinity of whole blood. Diabetologia 1982;23:399–402.

    PubMed  CAS  Google Scholar 

  15. Bunn HF, Gabbay KH, Gallop PM: The glycosylation of hemoglobin: Relevance to diabetes mellitus. Science 1978;200:21–27.

    PubMed  CAS  Google Scholar 

  16. Bunn HF: Nonenzymatic glycosylation of protein: Relevance in diabetes Am J Med 1981;70:325–330.

    CAS  Google Scholar 

  17. Day JF, Thornburg RW, Thorpe SW, et al: Nonenzymatic glucosylation of rat albumin: Studies in vitro and in vivo. J Biol Chem 1979;254:9394–9400.

    PubMed  CAS  Google Scholar 

  18. Shaklai N, Garlick RL, bunn HF: Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem 1984;259:3812–3817.

    PubMed  CAS  Google Scholar 

  19. Williams SK, Devenney JJ, Bitensky MW: Micropinocytic ingestion of glycosylated albumin by isolated microvessels: Possible role in pathogenesis of diabetic microangiopathy. Proc Natl Acad Sci USA 1981; 78:2393–2397.

    PubMed  CAS  Google Scholar 

  20. Williams SK, Solenski NJ: Enhanced vesicular ingestion of nonenzy- matically glucosylated proteins by capillary endothelium. Microvasc Res 1984;28:311–321.

    PubMed  CAS  Google Scholar 

  21. Williams SK, Siegal RK: Preferential transport of nonenzymatically glucosylated ferritin across the kidney glomerulus. Kidney Int 1985;28: 146–152.

    PubMed  CAS  Google Scholar 

  22. Ghiggeri GM, Candiano G, Delfino G, et al: Glycosyl albumin and diabetic microalbuminuria: Demonstration of altered renal handling. Kidney Int 1984;25:565–570.

    PubMed  CAS  Google Scholar 

  23. McVerry BA, Hopp A, Fisher C, et al: Production of pseudodiabetic renal glomerular changes in mice after repeated injection of glycosylated proteins. Lancet 1980;2:738–740.

    Google Scholar 

  24. Jeraj KP, Michael AF, Mauer SM, et al: Glucosylated and normal human or rat albumin do not bind to renal basement membranes of diabetic and control rats. Diabetes 1983;32:380–382.

    PubMed  CAS  Google Scholar 

  25. Miller K, Michael AF: Immunopathology of renal extracellular membranes in diabetes mellitus: Specificity of tubular basement membrane immunoflourescence. Diabetes 1976;25:701–708.

    PubMed  CAS  Google Scholar 

  26. Nathke HE, Siess EA, Wieland OH: Glucosylated plasma protein infection does not produce glomerular basement membrane thickening. Horm Metab Res 1984;16:557–558.

    PubMed  CAS  Google Scholar 

  27. Summerfield JA, Vergalla J, Jones EA: Modulation of a glycoprotein recognition system on rat hepatic endothelial cells by glucose and diabetes mellitus. J Clin Invest 1982;69:1337–1347.

    PubMed  CAS  Google Scholar 

  28. Ashwell G, Morell AG: The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol 1974;41:99–128.

    PubMed  CAS  Google Scholar 

  29. Achord DT, Brot FE, Sly WS: Inhibition of the rat clearance system for agalacto-orosomucoid by yeast mannans and by mannose. Biochem Biophys Res Commun 1977;77:409–415.

    PubMed  CAS  Google Scholar 

  30. Achord DT, Bort FE, Bell CE, Sly WS: Human ß-glucuronidase: In vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells. Cell 1978;15:269–279.

    PubMed  CAS  Google Scholar 

  31. Cohenford MA, Urbanowski JC, Shepard DC, et al: Nonenzymatic glycosylation of human IgG: In vitro preparation. Immunol Commun. 1983;12:189–200.

    PubMed  CAS  Google Scholar 

  32. Urbanowski JC, Cohenford MA, Dain JA: Nonenzymatic galactosylation of human serum albumin. J Biol Chem 1982;257:111–115.

    PubMed  CAS  Google Scholar 

  33. Ney KA, Pasqua JJ, Colley KJ, et al: In vitro preparation of non- ezymatically glucosylated human transferrin, a2, and fibrinogen with preservation of function. Diabetes 1985;34:462–470.

    PubMed  CAS  Google Scholar 

  34. Marynen P, Vanleuven F, Cassiman J-J et al: Proteolysis at a lysine residue abolishes the receptor-recognition site of alpha 2-macroglobulin complexes. FEBS Lett 1982;137:241–244.

    PubMed  CAS  Google Scholar 

  35. Schleicher E, Deufel T, Wieland OH: Non-enzymatic glycosylation of human serum lipoproteins: Elevated e-lysine glycosylated low density lipoprotein in diabetic patients. FEBS Lett 1981;129:1–4.

    PubMed  CAS  Google Scholar 

  36. Sasaki J, Arora V, Cottam GL: Nonenzymatic galactosylation of human LDL decreases its metabolism by human skin fibroblasts. Biochem Biophys Res Commun 1982;108:791–796.

    PubMed  CAS  Google Scholar 

  37. Witztum JL, Mahoney EM, Branks MJ, et al: Nonenzymatic glucosy- lation of low-density lipoproteins alters its biologic activity. Diabetes 1982;31:283–291.

    PubMed  CAS  Google Scholar 

  38. Kim HJ, Kurup XV: Nonenzymatic glycosylation of human plasma low density lipoprotein: Evidence for in vitro and in vivo glycosylation. Metabolism 1982;31:348–353.

    PubMed  CAS  Google Scholar 

  39. Sasaki J, Cottam GL: Glycosylation of human LDL and its metabolism in human skin fibroblasts. Biochem biophys Res Comm 1982; 104:977–983.

    PubMed  CAS  Google Scholar 

  40. Gonen B, Baenziger J, Schonfeld G, et al: Non-enzymatic glycosylation of low density lipoproteins in vitro: Effects on cell-interactive properties. Diabetes 1981;30:875–878.

    PubMed  CAS  Google Scholar 

  41. Lorenzi M, Cagliero E, Markey B, et al: Interaction of human endothelial cells with elevated glucose concentrations and native and glycosylated low density lipoproteins. Diabetologia 1984;26:218–222.

    PubMed  CAS  Google Scholar 

  42. Kim HJ, Kurup IV: Decreased catabolism of glycosylated low density lipoprotein in diabetic rats. Diabetes 1981;30:47A.

    Google Scholar 

  43. Sasaki J, Cottam GL: Glycosylation of LDL decreases its ability to interact with high-affinity receptors of human fibroblasts in vitro and decreases its clearance from rabbit plasma in vivo. Biochem Biophys Acta 1982;713:199–207.

    PubMed  CAS  Google Scholar 

  44. Schleicher E, Olgemöller B, Schön J, et al: Limited nonenzymatic glucosylation of low-density lipoprotein does not alter its catabolism in tissue culture. Biohcem Biophys Acta 1985;846:226–233.

    CAS  Google Scholar 

  45. Kramer FB, Chen Y-DI, Cheung RMC, et al: Are the binding and degradation of low density lipoprotein altered in Type 2 (non-insulin dependent) diabetes mellitus? Diabetologia 1981;23:28–33.

    Google Scholar 

  46. Lopez-Virella MF, Sherer, GK, Lees AM, et al: Surface binding, internalization and degradation by cultured human fibroblasts of low density lipoproteins isolated from Type I (insulin-dependent) diabetic patients: Changes with metabolic control. Diabetologia 1982;22:430–436.

    Google Scholar 

  47. Steinbrecher VP, Witztum JL: Glucosylation of low-density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 1984;33:130–134.

    PubMed  CAS  Google Scholar 

  48. Curtiss LK, Witztum JL: A novel method for generating region-specific monoclonal antibodies to modified proteins: Application to the identification of human glucosylated low-density lipoproteins. J Clin Invest 1983;72:1427–1438.

    PubMed  CAS  Google Scholar 

  49. Curtiss LK, Witzum JL: Plasma apolipoproteins AI, All, B, CI and E are glucosylated in hyperglycemic diabetic subjects. Diabetes 1985;34:452–461.

    PubMed  CAS  Google Scholar 

  50. Kesaniemi YA, Witztum JL, Steinbrecher UP: Receptor-mediated clearance of low density lipoprotein in man: New estimates using glucosylated low density lipoprotein. Arteriosclerosis 1982;2:441a.

    Google Scholar 

  51. Sasaki J, Okamura T, Cottam GL: Measurement of receptor-independent metabolism of low-density lipoprotein: An application of glycosylated low-density lipoprotein. Eur J Biochem 1983;131:535–538.

    PubMed  CAS  Google Scholar 

  52. Goldstein JL, Ho YK, Basu SK, et al: Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sei USA 1979;76:333–337.

    CAS  Google Scholar 

  53. Gralnick HG, Coller BS, Sultan Y: Carbohydrate deficiency of the factor YIII/von Willebrand factor protein in Von Willebrand’s disease variants. Science 1976;192:56–59.

    PubMed  CAS  Google Scholar 

  54. Saraswathi S, Colman RW: Role of galactose in bovine factor V J Biol Chem 1975;250:8111–8118.

    CAS  Google Scholar 

  55. Lutjens A, teVelde AA, v.d. Veen EA, et al: Glycosylation of human fibrinogen in vivo. Diabetologia 1985;28:87–89.

    PubMed  CAS  Google Scholar 

  56. Brownlee M, Vlassara H, Cerami A: Nonenzymatic glycosylation reduces the suseptibility of fibrin to degradation by plasmin. Diabetes 1983; 32:680–684.

    PubMed  CAS  Google Scholar 

  57. Brownlee M, Vlassara H, Cerami A: Inhibition of heparin-catalyzed human antithrombin III activity by nonenzymatic glycosylation. Diabetes 1984;33:532–535.

    PubMed  CAS  Google Scholar 

  58. Banerjee RN, Sahni AL, Kumar V, et al: Antithrombin 3 deficiency in maturity onset diabetes mellitus and atherosclerosis. Thromb Diath Haemorrh 1974;31:339–345.

    PubMed  CAS  Google Scholar 

  59. Sowers JR, Truck ML, Sowers DK: Plasma antithrombin III and thrombin generation time: Correlation with hemoglobin A and fasting serum glucose in young diabetic women. Diabetes Care 1980;3:655–658.

    PubMed  CAS  Google Scholar 

  60. Jones RL: Fibrinopeptide-A in diabetes mellitus: Relation to levels of blood glucose, fibrinogen disappearance, and hemodynamic changes. Diabetes 1985;34:836–843.

    PubMed  CAS  Google Scholar 

  61. Jones RL, Peterson CM: Reduced fibrinogen survival in diabetes mellitus: A reversible phenomenon. J Clin Invest 1979;63:485–493.

    PubMed  CAS  Google Scholar 

  62. McVerry BA, Thorpe S, Joe F, et al: Nonenzymatic glucosylation of fibrinogen. Haemostasis 1981;10:261–270.

    PubMed  CAS  Google Scholar 

  63. Trueb B, Holenstein CG, Fischer RW, et al: Nonenzymatic glycosylation of proteins. A warning. J Biol Chem 1980;255:6717–6720.

    PubMed  CAS  Google Scholar 

  64. LePape A, Gutman N, Guitton JD, et al: Nonenzymatic glycosylation increases platelet aggregating potency of collagen from placenta of diabetic human beings. Biochem Biophys Res Commun 1983;111:602–610.

    CAS  Google Scholar 

  65. LePape A, Guitton JD, Gutman N, et al: Nonenzymatic glycosylation of collagen in diabetes: Incidence on increased normal platelet aggregation. Haemostasis 1983;13:36–54.

    CAS  Google Scholar 

  66. Dolhofer R, Wieland OH: Preparation and biological properties of glycosylated insulin. FEBS Lett 1979;100:133–136.

    PubMed  CAS  Google Scholar 

  67. Kornfeld S: The effects of structural modification in the biologic activity of human transferrin. Biochemistry 1968;1:945–954.

    Google Scholar 

  68. Coradello H, Pollak A, Pagano M, et al: Nonenzymatic glycosylation of Cathepsin B: Possible influence on conversion of proinsulin to insulin. IRCS Med Sci 1981;9:766–767.

    CAS  Google Scholar 

  69. Dolhofer R, Siess EA, Wieland OH: Inactivation of bovine kidney β-N- acetyl-D-glucosaminidase by nonenzymatic glucosylation. Hoppe Seylers Z Physiol Chem 1982;363:1427–1436.

    PubMed  CAS  Google Scholar 

  70. Parathasarathy N, Spiro RG: Effect of diabetes on the glycosamino- glycan component of the human glomerular basement membrane. Diabetes 1982;31:738–741.

    Google Scholar 

  71. Cohen MP, Surma ML: [35S]-Sulfate incorporation into glomerular basement membrane glycosaminoglycans is decreased in experimental diabetes. J Lab Clin Med 1981;98:715–722.

    PubMed  CAS  Google Scholar 

  72. Cohen MP, Surma ML: Effect of diabetes on in vivo metabolism of [35S]- labeled glomerular basement membrane. Diabetes 1984; 33:8–12.

    PubMed  CAS  Google Scholar 

  73. Esnard F, Guitton JD, Stauber WT, et al: Nonenzymatic glycosylation of rat serum proteinase inhibitors and change in their concentration during experimental diabetes. Molecular Physiology 1985;7:211–218.

    CAS  Google Scholar 

  74. Stevens VJ, Rouzer CA, Monnier VM et al: Diabetic cataract formation: Potential role of glycosylation of lens crystallins. Proc Natl Acad Sci USA 1978;75:2918–2922.

    PubMed  CAS  Google Scholar 

  75. Cerami A, Stevens YJ, Monnier VM: Role of nonenzymatic glycosylation in the development of the sequelae of diabetes mellitus. Metabolism 1979;28:431–437.

    PubMed  CAS  Google Scholar 

  76. Monnier VM, Stevens VJ, Cerami A: Nonenzymatic glycosylation, sulfhydryl oxidation, and aggregation of lens proteins in experimental sugar cataracts. J Exp Med 1979;150:1098–1107.

    PubMed  CAS  Google Scholar 

  77. Chiou SH, Chylack LT, Tung WH, et al: Nonenzymatic glycosylation of bovine lens crystallins: Effect of aging. J Biol Chem 1981;256:5176–5180.

    PubMed  CAS  Google Scholar 

  78. Pande A, Garner WH, Spector A: Glucosylation of human lens protein and cataractogenesis. Biochem Biophys Res Commun 1979;89:1260–1266.

    PubMed  CAS  Google Scholar 

  79. Lee JH, Skin DH, Lupovitch A, et al: Glycosylation of lens proteins in senile cataract and diabetes mellitus. Biochem Biophys Res Commun 1984;123:888–893.

    PubMed  CAS  Google Scholar 

  80. Kasai K, Nakamura T, Kase N, et al: Increased glycosylation of proteins from cataractous lenses in diabetes. Diabetologia 1983;25:36–38.

    PubMed  CAS  Google Scholar 

  81. Beswick HT, Harding JJ: Conformational changes induced in bovine lens a-erystallin by carbamylation: Relevance to cataract. Biochem J 1984;223:221–227.

    PubMed  CAS  Google Scholar 

  82. Liang JN, Chylack T: Change in the protein tertiary structure with nonenzymatic glycosylation of calf a-crystallin. Biochem Biophys Res Commun 1984;123:899–906.

    PubMed  CAS  Google Scholar 

  83. Liang JN, Chakrabarti B: Glycosylation-induced conformational change in a-crystallin of bovine lens. Biophys J 1981;33:138a.

    Google Scholar 

  84. Ansari NHM, Awsathi YL, Srivastava SK: Role of glycosylation in protein disulfide formation and cataractogenesis. Exp Eye Res 1980;31:9–19.

    PubMed  CAS  Google Scholar 

  85. Kinoshita JH: Mechanisms initiating cataract formation. Invest Ophthalmol 1974;13:713–724.

    PubMed  CAS  Google Scholar 

  86. Chiou SH, Chylack LT, Bunn HF, et al: Role of nonenzymatic glycosylation in experimental cataract formation. Biochem Biophys Res Commun 1980;95:894–901.

    PubMed  CAS  Google Scholar 

  87. Ansari NH, Awasthi YC, Srivastava SK: Presented at the Annual Spring Meeting of the Association for Research in Vision and Ophthalmology, Florida, 1979.

    Google Scholar 

  88. Rao GN, Lardis MP, Cotlier E: Acetylation of lens crystallins: A possible mechanism by which aspirin could prevent cataract formation. Biochem Biophys Res Commun 1985;128:1125–1132.

    PubMed  CAS  Google Scholar 

  89. Ceriello A, Dello Russo P, Curcio F, et al: Acetylsalicylic acid and lysine inhibit protein glycosylation in vitro: A preliminary report. Diabete Metab 1984;10:128–129.

    Google Scholar 

  90. Yue DK, McLennan S, Handelsman DJ, et al: The effect of salicylates on nonenzymatic glycosylation and thermal stability of collagen in diabetic rats. Diabetes 1984;33:745–751.

    PubMed  CAS  Google Scholar 

  91. Cotlier E: Aspirin effect on cataract formation in patients with rheumatoid arthritis alone or combined with diabetes. Int Ophthalmol 1981;3:173–177.

    PubMed  CAS  Google Scholar 

  92. Vlassara H, Brownlee M, Cerami A: Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus. Proc Natl Acad Sci USA 1981;78:5190–5192.

    PubMed  CAS  Google Scholar 

  93. Yogt BW, Schleicher ED, Wieland OH: e-amino-lysine-bound glucose in human tissues obtained at autopsy: Increase in diabetes mellitus. Diabetes 1982;31:1123–1127.

    Google Scholar 

  94. Vlassara H, Brownlee M, Cerami A: Excessive nonenzymatic glycosy-lation of peripheral and central nervous system myelin components in diabetic rats. Diabetes 1983;32:670–674.

    PubMed  CAS  Google Scholar 

  95. Vlassara H, Brownlee M, Cerami A: Accumulation of diabetic rat peripheral nerve myelin by macrophages increases with the presence of advanced glycosylation end-products. J Exp Med 1984;160:197–207.

    PubMed  CAS  Google Scholar 

  96. Vlassara H, Brownlee M, Cerami A: Recognition and uptake of human diabetic peripheral nerve myelin by macrophages. Diabetes 1985;34:553–557.

    PubMed  CAS  Google Scholar 

  97. Johnson WJ, Pizzo SV, Imber MJ, et al: Receptors for maleylated proteins regulate secretion of neutral proteases by murine macrophages. Science 1982;218:574–576.

    PubMed  CAS  Google Scholar 

  98. Cammer W, Brosnan CF, Bloom BR, et al: Degradation of PQ, Pl5 and Pr proteins in peripheral nervous system myelin by plasmin: Diseases. J Neurochem 1981;36:1506–1514.

    PubMed  CAS  Google Scholar 

  99. Williams SK, Howarth NL, Devenny JJ, et al: Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus. Proc Natl Acad Sei USA 1982;79:6546–6550.

    CAS  Google Scholar 

  100. Rosenberg H, Modrak JB, Hassing JM, et al: Glycosylated collagen. Biochem Biophys Res Commun 1979;91:498–501.

    PubMed  CAS  Google Scholar 

  101. Schnider SL, Kohn RR: Glucosylation of human collagen in aging and diabetes mellitus.J Clin Invest 1980;66:1179–1181.

    PubMed  CAS  Google Scholar 

  102. Schnider SL, Kohn RR: Effects of age and diabetes mellitus on the solubility and nonenzymatic glucosylation of human skin collagen. J Clin Invest 1981;67:1630–1635.

    PubMed  CAS  Google Scholar 

  103. LePape A, Guitton JD, Muh JP: Modification of glomerular basement membrane cross-links in experimental diabetic rats. Biochem Biophys Res Commun 1981;100:1214–1221.

    CAS  Google Scholar 

  104. LePape A, Muh JP, Bailey AJ: Characterization of N-glycosylated Type I collagen in streptozotocin-induced diabetes. Biochem J 1981; 197:405–412.

    CAS  Google Scholar 

  105. Buckingham BA, Uitto J, Sandberg C, et al: Scleroderma-like changes in insulin-dependent diabetes mellitus: Clinical and biochemical studies. Diabetes Care 1984;7:163–169.

    PubMed  CAS  Google Scholar 

  106. Chang AY, Noble RE: 5-Hydroxymethylfurfural-forming proteins in the renal glomeruli of control and streptozotocin-diabetic rats. Life Sei 1980; 26:1329–1333.

    CAS  Google Scholar 

  107. Cohen MP, Urdanivia E, Surma M, et al: Increased glycosylation of glomerular basement membrane collagen in diabetes. Biochem Biophys Res Commun 1980;95:765–769.

    PubMed  CAS  Google Scholar 

  108. Cohen MP, Wu V-Y: Identification of specific amino acids in diabetic glomerular basement membrane collagen subject to nonenzymatic glucosylation in vivo. Biochem Biophys Res Commun 1981;100:1549–1544.

    PubMed  CAS  Google Scholar 

  109. Perejda AJ, Uitto J: Nonenzymatic glycosylation of collagen and other proteins: Relationship to development of diabetic complications. Coll Rel Res 1982;2:81–88.

    CAS  Google Scholar 

  110. Schleicher E, Wieland OH: Changes of human glomerular basement membrane in diabetes mellitus. J Clin Chem Biochem 1984;22:223–227.

    CAS  Google Scholar 

  111. Trüeb B, Flückiger R, Winterhalter KH: Nonenzymatic glycosylation of basement membrane collagen in diabetes mellitus. Coll Relat Res 1984; 4:239–251.

    PubMed  Google Scholar 

  112. Uitto J, Perejda AJ, Grant GA, et al: Glucosylation of human glomerular basement membrane collagen: Increased content of hexose in ketoamine linkage and unaltered hydroxylysine-O-glycosides in patients with diabetes. Connect Tissue Res 1982;10:287–296.

    PubMed  CAS  Google Scholar 

  113. Mandel SS, Shin DH, Newman BL, et al: Glycosylation in vivo of human lens capsule (basement membrane) and diabetes mellitus. Biochem Biophys Res Commun 1983;117:51–56.

    PubMed  CAS  Google Scholar 

  114. Andreassen TT, Seyer-Hansen K, Bailey AJ: Thermal stability, mechanical properties and reducible cross-links of rat tail tendon in experimental diabetes. Biochim Biophys Acta 1983;677:313–317.

    Google Scholar 

  115. Rogozinski S, Blumenfeld OO, Seifter S: The nonenzymatic glycosylation of collagen. Arch Biochem Biophys 1983;221:427–437.

    Google Scholar 

  116. Perejda AJ, Zaragoza EJ, Eriksen E, et al: Nonenzymatic glucosylation of lysyl and hydroxylysyl residues in Type I and Type II collagens. Coll Relat Res 1984;4:427–439.

    PubMed  CAS  Google Scholar 

  117. Cohen MP, Urdanivia E, Wu Y-Y: Nonenzymatic glycosylation of basement membrane. Renal Physiol 1981;4:90–95.

    PubMed  CAS  Google Scholar 

  118. Cohen MP, Urdanivia E, Surma M, et al: Nonenzymatic glycosylation of basement membranes. In vitro studies. Diabetes 1981;30:367–371.

    PubMed  CAS  Google Scholar 

  119. Hamlin CR, Kohn RR: Evidence for progressive, age-related structural changes in post-mature human collagen. Biochim Biophys Acta 1971; 236:458–467.

    PubMed  CAS  Google Scholar 

  120. Hamlin CR, Kohn RR, Luschin JH: Apparent accelerated aging of human collagen in diabetes mellitus. Diabetes 1975;24:902–904.

    PubMed  CAS  Google Scholar 

  121. Seibold JR, Uitto J, Dorwart BB, et al: Collagen synthesis and collagenase activity in dermal fibroblasts from patients with diabetes and digital sclerosis. J Lab Clin Med 1985;105:664–667.

    PubMed  CAS  Google Scholar 

  122. Lyons TJ, Kennedy L: Effect of in vitro nonenzymatic glycosylation of human skin collagen on susceptibility to collagenase digestion. Eur J Clin Invest 1985;15:128–131.

    PubMed  CAS  Google Scholar 

  123. Tanzer ML: Cross-linking of collagen: Endogenous aldehydes react in several ways to form a variety of unique covalent cross-links. Science 1973;180:561–566.

    PubMed  CAS  Google Scholar 

  124. Tanzer ML: Isolation of lysinonorleucine from collagen. Biochem Biophys Res Commun 1970;39:183–189.

    PubMed  CAS  Google Scholar 

  125. Heathcote JG, Bailey AJ, Grant ME: Studies on the assembly of the rat lens capsule. Biosynthesis of a cross-linked collagenous component of high molecular weight. Biochem J 1980;190:229–237.

    PubMed  CAS  Google Scholar 

  126. Tanzer ML, Kefalides NA: Collagen cross-links: Occurrence in basement membrane collagens. Biochem Biophys Res Commun 1973;51:775–780.

    PubMed  CAS  Google Scholar 

  127. Wu V-Y, Cohen MP: Reducible cross-links in human glomerular basement membrane. Biochem Biophys Res Commun 1982;104:911–915.

    PubMed  CAS  Google Scholar 

  128. Pinnell SR, Martin GR: The cross-linking of collagen and elastin: Enzymatic conversion of lysine and peptide linkage to 8-aminoadipic-8- semialdehyde (allysine) by an extract from bone. Proc Natl Acad Sei USA 1968;61:708–716.

    CAS  Google Scholar 

  129. Siegel RC, Martin GR: Collagen cross-linking: Enzymatic synthesis of lysine-derived aldehydes and the production of cross-linked components. J Biol Chem 1970;245:1653–1658.

    PubMed  CAS  Google Scholar 

  130. Bailey AJ, Robins SP, Tanner MJA: Reducible components in the proteins of human erythrocyte membrane. Biochim Biophys Acta 1976;434:51–57.

    PubMed  CAS  Google Scholar 

  131. Tanzer ML, Fairweather R, Gallop PM: Collagen cross-links: Isolation of reducible N-hexosyl hydroxylysine from borohydride reduced calf skin insoluble collagen. Arch Biochem Biophys 1972;48:76–84.

    Google Scholar 

  132. Urdanivia E, Cohen MP: Identification of amino acid sites of [14C]- glycosylation of basement membranes. Clin Res 1981;29:734A.

    Google Scholar 

  133. Guitton, J-D., LePape A, Muh J-P: Influence of in vitro nonenzymatic glycosylation on the physico-chemical parameters of Type I collagen. Coll Relat Res 1984;4:253–264.

    PubMed  CAS  Google Scholar 

  134. Guitton J-D, LePape A, Sizaret PY, Muh, J-P: Effect of in vitro glucosy- lation of Type I collagen fibrillogenesis. Biosci Rep 1981;1:945–954.

    PubMed  CAS  Google Scholar 

  135. LePape A, Guitton J-D, Muh J-P: Distribution of nonenzymatically bound glucose in in vivo and in vitro glycosylated Type I collagen molecules. FEBS Lett 1984;170:23–27.

    CAS  Google Scholar 

  136. Lien Y-H, Stern R, Fu JCC, et al: Inhibition of collagen fibril formation in vitro and subsequent cross-linking of glucose. Science 1984;225:1489–1491.

    PubMed  CAS  Google Scholar 

  137. Li W, Shen S, Robertson GA, et al: Increased solubility of newly synthesized collagen in retinal capillary pericyte cultures by nonenzymatic glycosylation. Ophthalmic Res 1984;16:315–321.

    PubMed  CAS  Google Scholar 

  138. Yue DK, McLennan S, Delbridge L, et al: The thermal stability of collagen in diabetic rats: Correlation with severity of diabetes and nonenzymatic glycosylation. Diabetologia 1983;24:282–285.

    PubMed  CAS  Google Scholar 

  139. Kohn RR, Cerami A, Monnier VM: Collagen aging in vitro by nonenzymatic glycosylation and browning. Diabetes 1984;33:57–59.

    PubMed  CAS  Google Scholar 

  140. Yosha SF, Eiden HR, Rabinovitch A, et al: Experimental diabetes mellitus and age-stimulated changes in intact rat dermal collagen. Diabetes 1983;32:739–742.

    PubMed  CAS  Google Scholar 

  141. Brownlee M, Pongor S, Cerami A: Covalent attachment of soluble proteins by nonenzymatically glycosylated collagen: Role in the in situ formation of immune complexes. J Exp Med 1983;158:1739–1744.

    PubMed  CAS  Google Scholar 

  142. Brownlee M, Vlassara H, Cerami A: Nonenzymatic glycosylation products on collagen covalently trap low-density lipoprotein. Diabetes 1985;34:938–941.

    PubMed  CAS  Google Scholar 

  143. Michael AF, Brown DM: Increased concentration of albumin in kidney basement membranes in diabetes mellitus. Diabetes 1981;30:843–846.

    PubMed  CAS  Google Scholar 

  144. Kato Y, Matsuda T, Watanabe K, et al: Alteration of ovalbumin immunogenic activity by glycosylation through Maillard reaction. Agric Biol Chem 1985;49:423–427.

    CAS  Google Scholar 

  145. Bassiouny AR, Rosenberg H, McDonald TL: Glucosylated collagen is antigenic. Diabetes 1983;32:1182–1184.

    PubMed  CAS  Google Scholar 

  146. Cohen RA, Mauer SM, Barbosa J: Immunofluorescence studies of skeletal muscle extracellular membranes in diabetes mellitus. Lab Invest 1978;29:275–278.

    Google Scholar 

  147. Chavers B, Etzwiler D, Michael AF: Albumin deposition in dermal capillary basement membranes in insulin-dependent diabetes mellitus. Diabetes 1981;30:275–278.

    PubMed  CAS  Google Scholar 

  148. Ruoslahti E, Engvall E, Hagman EG: Fibronectin: Current concepts of its structure and function. Collagen Res 1981;1:95–128.

    CAS  Google Scholar 

  149. Yamada KM: Cell surface interactions with extracellular materials. Annu Rev Biochem 1983;52:761–799.

    PubMed  CAS  Google Scholar 

  150. Mosher DF: Physiology of fibronectin. Annu Rev Med 1984;35:561–565.

    PubMed  CAS  Google Scholar 

  151. Linder E, Vaheri A, Ruoslahti E, et al: Distribution of fibronectin in human tissues and relationships to other connective tissue components. Ann NY Acad Sci 1978;312:151–159.

    PubMed  CAS  Google Scholar 

  152. Stenman S, Vaheri A: Distribution of a major connective tissue protein, fibronectin, in normal human tissues. J Exp Med 1978;147:1054–1064.

    PubMed  CAS  Google Scholar 

  153. Laurie GW, LeBlond CP, Martin GR: Light microscopic immuno- localization of Type IV collagen, laminin, heparan sulfate proteoglycan and fibronectin in the basement membranes of a variety of rat organs. Am J Anat 1983;157:71–82.

    Google Scholar 

  154. Mosher DF, Sakesla O, Keski-Oja J, et al: Distribution of a major surface- associated glycoprotein, fibronectin, in cultures of adherent cells. J Supramol Struct 1977;6:551–557.

    PubMed  CAS  Google Scholar 

  155. Oberly TD, Mosher DF, Mills MD: Localization of fibronectin within the renal glomerulus and its production by cultured glomerular cells. Am J Pathol 1979;96:651–662.

    Google Scholar 

  156. Courtoy PJ, Kanwar YS, Hynes RO, et al: Fibronectin localization in the rat glomerulus. J Cell Biol 1980;87:691–696.

    PubMed  CAS  Google Scholar 

  157. Martinez-Hernandez A, Marsh CA, Clark CC, et al: Fibronectin: Its relationship to basement membranes. II. Ultrastructural studies. Collagen Res 1981;5:405–418.

    Google Scholar 

  158. Oberly TD, Murphy-Ullrich JE, Albrecht RM, et al: The effect of the dimeric and multimeric forms of fibronectin on the adhesion and growth of primary glomerular cells. Exp Cell Res 1983;145:265–276.

    Google Scholar 

  159. Cohen MP, Ku L: Inhibition of fibronectin binding to matrix components by nonenzymatic glycosylation. Diabetes 1984;33:970–974.

    PubMed  CAS  Google Scholar 

  160. Tarsio JF, Wigness B, Rhode TD, et al: Nonenzymatic glycation of fibronectin and alterations in the molecular association of cell matrix and basement membrane components in diabetes mellitus. Diabetes 1985; 34:477–484.

    PubMed  CAS  Google Scholar 

  161. Yamada KM, Kennedy DW, Kimata K, et al: Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem 1980;255:6055–6063.

    PubMed  CAS  Google Scholar 

  162. McKeown-Longo PJ, Mosher DF: Binding of plasma fibronectin to cell layers of human skin fibroblasts. J Cell Biol 1983;97:466–472.

    PubMed  CAS  Google Scholar 

  163. Monnier VM, Cerami A: The search for non-enzymatic browning products in the human lens. Invest Ophthalmol Vis Sci 1981;20:169.

    Google Scholar 

  164. Monnier VM, Cerami A: Nonenzymatic browning in vivo: Possible process for aging for long-lived proteins. Science 1981;211:491–493.

    PubMed  CAS  Google Scholar 

  165. Pirie A: Color and solubility of the proteins of human cataracts. Invest Opthalmol 1968;7:634–650.

    CAS  Google Scholar 

  166. DeBats A, Rhodes EL: Innate fluorescence in diabetic and aged kidneys. Lancet 1974;1:137–138.

    CAS  Google Scholar 

  167. Reynolds TM: Chemistry of nonenzymatic browning. Adv Food Res 1963; 12:1–52.

    PubMed  CAS  Google Scholar 

  168. Reynolds TM: Chemistry of nonenzymatic browning. Adv Food Res 1965; 14:167–283.

    PubMed  CAS  Google Scholar 

  169. Brownlee M, Ylassara H, Cerami A: Nonenzymatic glycosylation and the pathogenesis of diabetic complications. Ann Intern Med 1984;101:527–537.

    PubMed  CAS  Google Scholar 

  170. Stevens VJ, Monnier VM, Cerami A: Hemoglobin glycosylation as a model for modification of other proteins. Texas Rep Biol Med 1980–1981; 40:387–396.

    CAS  Google Scholar 

  171. Monnier VM, Cerami A: Nonenzymatic glycosylation and browning of proteins in diabetes. Clin Endocrinol Metab 1982;11:431–452.

    PubMed  CAS  Google Scholar 

  172. Monnier VM, Cerami A: Detection of nonenzymatic browning products in the human lens. Biochim Biophys Acta 1983;760:97–103.

    PubMed  CAS  Google Scholar 

  173. Kent MJ, Light ND, Bailey AJ: Evidence for glucose-mediated covalent cross-linking of collagen after glycosylation in vitro. Biochem J 1985; 225:745–752.

    PubMed  CAS  Google Scholar 

  174. Monnier VM, Kohn RR, Cerami A: Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci USA 1984;81:583–587.

    PubMed  CAS  Google Scholar 

  175. Pongor S, Ulrich PC, Bencsath A, et al: Aging of proteins: Isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci USA 1984;81:2684–2688.

    PubMed  CAS  Google Scholar 

  176. Chang JCF, Ulrich PC, Bucala R, et al: Detection of an advanced glycosylation product bound to protein in situ. J Biol Chem 1985; 260:7970–7974.

    PubMed  CAS  Google Scholar 

  177. Brownlee M, Ulrich P, Vlassara H, et al: A furan-containing nonenzymatic glycosylation product causes P-450 enzyme-mediated cytotoxicity. Diabetes 1985;34(suppl 1):51A.

    Google Scholar 

  178. Sakurai T, Takahashi H, Tsuchiya S: New Fluorescence of nonenzyma- tically glucosylated human serum albumin. FEBS Lett 1984;176:27–31.

    PubMed  CAS  Google Scholar 

  179. Eble AS, Thorpe S, Baynes JW: Nonenzymatical glucosylation and glucose-dependent cross-linking of protein. J Biol Chem 1983;258:9406–9412.

    PubMed  CAS  Google Scholar 

  180. Rucklidge GJ, Bates GP, Robins SP: Preparation and analysis of the products of non-enzymatic glycosylation and their relationship to cross- linking of proteins. Biochim Biophys Acta 1983;747:165–170.

    PubMed  CAS  Google Scholar 

  181. Vlassara H, Brownlee M, Cerami A: High-affinity-receptor-mediated uptake and degradation of glucose-modified proteins: A potential mechanism for removal of senescent macromolecules. Proc Natl Acad Sci USA 1985;82:5588–5592.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Cohen, M.P. (1986). Pathophysiologic Significance. In: Diabetes and Protein Glycosylation. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4938-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4938-2_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9366-8

  • Online ISBN: 978-1-4612-4938-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics