Thermodynamics of Stable Mineral Assemblages of the Mantle Transition Zone

  • O. L. Kuskov
  • R. F. Galimzyanov
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 6)

Abstract

Although the mineral composition and inner structure of the transition zone of the Earth’s mantle has often been examined in the literature from the petrologic—geochemical point of view (e.g., Akimoto, 1972; Ringwood, 1975; Akaogi and Akimoto, 1977; Liu, 1979; Yagi et al, 1979a; Ito and Yamada, 1982; Jeanloz and Thompson, 1983) a detailed picture of phase equilibria at pressures over 100 kbar, both in the manztle and in silicate systems modeling its composition, has not yet been clearly outlined. The reason lies in the difficulties of conducting experimental studies at the P-T parameters of the transition zone which increase greatly with the number of phases. Thus, use of the numerical computation techniques of chemical thermodynamics becomes indispensable, making it possible to generalize and match the available experimental data on simple systems and, based upon these, to derive phase diagrams of much more complex systems.

Keywords

Entropy Periclase Silicate Geochemistry Olivine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaogi, M., and Akimoto S. (1977) Pyroxene-garnet solid solution equilibria in the systems Mg:Si4O12-Mg3Al2Si3O12 and Fe4Si4O12-Fe3Al2Si3O12 at high pressures and temperatures, Phys. Earth Planet. Int. 15, 90–106.Google Scholar
  2. Akaogi, M., Ross, N. L., McMillan, P., and Navrotsky, A. (1984) The Mg2SiO4 polymorphs (olivine, modified spinel and spinel)—thermodynamic properties from oxide melt solution calorimetry, phase relations, and models of lattice vibrations, Amer. Mineral 69, 499–512.Google Scholar
  3. Akimoto, S. (1972) The system MgO-FeO-SiO2 at high pressures and temperatures— Phase equilibria and elastic properties, Tectonophysics 13, 161–187.Google Scholar
  4. Akimoto, S. (1975) The system MgO-FeO-SiO2 at high pressures and temperatures- phase relations and elastic properties, in Upper Mantle, p. 60. Mir, Moskow.Google Scholar
  5. Akimoto, S., Vagi, J., and Inoue, K. (1977) High temperature-pressure phase boundaries in silicate systems using in situ X-ray diffraction, In: High Pressure Research, edited by M. H. Manghnani and S. Akimoto, pp. 585–602. Academic Press, New York.Google Scholar
  6. Al’tshuler, L. V. (1965) Shock waves in high pressure physics, Sov. Adv. Phys. Sci. 85, 197–258.Google Scholar
  7. Anderson, O. L. (1966) The use of ultrasonic measurements under modest pressure J. Phys. Chem. Solids 27, 545–547.Google Scholar
  8. Anderson, O. L. (1980) An experimental high-temperature thermal equation of state by 9. passing the Grüneisen parameter, Phy. Earth Planet. Int. 22, 173.Google Scholar
  9. Anderson, O. L., and Baumgardner, J. R. (1980) Equations of state in planet interiors, Proc. Lunar Planet. Sci. Conf., Texas, pp. 1999–2014.Google Scholar
  10. Babuška, V., Fiala, J., and Kumayawa, M. (1970) Elastic properties of garnet solid- solution, Phys. Earth Planet. Int. 16, 157.Google Scholar
  11. Barsukov, V. L., and Urusov, V. S. (1982) Phase transformations in the mantle transition zone and the possible change of the Earth’s radius, Geochemistry 12, 1729–1743.Google Scholar
  12. Bass, J. D., Liebermann, R. C., Wiedner, D. J., and Fich, S. J. (1981) Elastic properties from acoustic and volume compression experiments, Phys. Earth Planet. Int. 25, 140.Google Scholar
  13. Basett, W. A., and Ming, L. C. (1972) Disproportionation of Fe2SiO4 to 2FeO + SiO2 (stishovite) at pressures up to 250 kbar and temperatures up to 3000°C, Phys. Earth Planet. Int. 6, 154–160.Google Scholar
  14. Basett, W. A., and Ming, L. C. (1976) New application of the diamond anvil pressure cell: (II) Laser heating at high pressure, in The Physics and Chemistry of Minerals and Rocks, edited by R. G. J. Strens, pp. 365–375. John Wiley and Sons, New York.Google Scholar
  15. Birch F. (1952) Elasticity and constitution of the Earth’s interior, J. Geophys. Res. 57, 227–286.Google Scholar
  16. Boehler, R., and Ramakrishnan, J. (1980) Experimental results of the Grüneisen parameter: a review, J. Geophys. Res. 85, 6996.Google Scholar
  17. Bonczar, L. J., and Graham, E. K. (1982) The pressure and temperature dependence of the elastic properties of polycrystal magnesio-wustite, J. Geophys. Res. 87, 1061–1078.Google Scholar
  18. Brown, J. M., and Shankland, T. J. (1981) Thermodynamic parameters in the Earth as determined from seismic profiles, Geophys. J. Roy. Astronom. Soc. 66, 579–596.Google Scholar
  19. Chang, Z. P., and Baroch, G. R. (1973) Pressure-dependence of single-crystal elastic constants and anharmonic properties of spinel, J. Geophys. Res. 78, 2417.Google Scholar
  20. Chang, Z. P., and Graham, E. K. (1977) Elastic properties of oxides in the NaCl-structure, J. Phys. Chem. Solids 38, 1355.Google Scholar
  21. Chung, D. H. (1971) Elasticity and equations of state of olivines in the Mg2SiO4- Fe2SiO4 system, Geophys. J. 25, 511.Google Scholar
  22. Chung, D. H. (1972) Equations of state of olivine-transformed spinels, Earth Planet. Sci. Lett. 14, 348.Google Scholar
  23. Chung, D. H. (1973) On the equation of state of high-pressure solid phases, Earth Planet. Sci. Lett. 18, 125.Google Scholar
  24. Chung, D. H. (1974) General relationships among sound speeds. Phys. Earth Planet. Int. 8, 112–113.Google Scholar
  25. Chung, D. H. (1979) Elasticity of stishovite revisited, in Higher Pressure Science and Technology, p. 97, Plenum Press, New York, London.Google Scholar
  26. Chufarov, G. I., Men’s, A. N., and Juravlev, M. A. (1970) Thermodynamics of Reduction Processes of Metal Oxides. Metallurgy, Moscow, 399 pp.Google Scholar
  27. Clark, S. P. (Ed.) (1966) Handbook of Physical Constants. Yale Univ. Press, New Haven.Google Scholar
  28. Davies, G. F. (1973) Quasi-harmonic finite strain equations of state of solids, J. Phys. Chem. Solids 34, 1417.Google Scholar
  29. Doroshev, A. M., Malinovsky, I. Yu., Kalinin, A. A. (1976) Topology of the CaO- Al2O3-SiO2 system on the basis of experimental data, In: Experimental Investigation in Mineralogy, edited by A. A. Godovikov and A. B. Ptitzin, pp. 39–45. Nauka, Novosibirsk.Google Scholar
  30. Dragoo, A. L., and Spain, I. L. (1977) The elastic moduli and their pressure and temperature derivatives for calcium oxide, J. Phys. Chem. Solids 38, 705.Google Scholar
  31. Dziewonski, A., and Anderson, D. (1981) Preliminary reference Earth model, Phys. Earth Planet. Int. 25, 297–356.Google Scholar
  32. Finger, L. W., and Ohashi, Y. (1976) The thermal expansion of diopside to 800° and a refinement of the crystal structure at 700°C, Amer. Mineral. 61, 303.Google Scholar
  33. Giddings, R. A., and Gordon, R. S. (1973) Review of oxygen activities and phase boundaries in wustite as determined by electromotive-force and gravimetric methods, J. Amer. Ceram. Soc. 56, 111–116.Google Scholar
  34. Gieske, J. H., and Barsch, A. R. (1968) Pressure dependence of the elastic constants of single-crystal aluminium oxide, Phys. Stat. Sol. 29, 121.Google Scholar
  35. Graham, E. K., and Barsch, G. R. (1969) Elastic constants of single-crystal forsterite as a function of temperature and pressure, J. Geophys. Res. 74, 5949.Google Scholar
  36. Haas, J. L., Robinson, G. R., and Hemingway, B. S. (1981) Thermodynamic Tabulations for Selected Phases in the System CaO-Al2O3-SiO2-H2O. Open-File Report 80-908, U.S. Geol. Surv. Natl. Center for the Thermodynamic Data of Minerals, Reston, 135 pp.Google Scholar
  37. Halleck, P. M. (1973) Discrepancy between X-ray and ultrasonic determination of the compression behaviour of grossular garnet, Trans. Amer. Geophys. Union 54, 476.Google Scholar
  38. Haselton, H. T., and Westrum, E. F. (1980) Low-temperature heat capacities of synthetic pyrope, grossular and purope60 grossular40, Geochim. Cosmochim Acta 44, 701.Google Scholar
  39. Helgeson, H. C. (1969) Thermodynamics of hydro thermal systems at elevated temperature and pressure, Amer. J. Sci. 267, 729.Google Scholar
  40. Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals, Amer. J. Sci. 278A, 229.Google Scholar
  41. Horai, K., and Simmons, G. (1970) An empirical relationships between thermal conductivity and Debye temperature for silicates, J. Georphys. Res. 75, 978–982.Google Scholar
  42. Huang, W. L., and Wyllie, P. J. (1975) Melting and subsolidus phase relations for CaSiO3 to 35 kilobars pressure, Amer. Mineral. 60, 213–217.Google Scholar
  43. Intriligator, M. (1975) Mathematic Methods of Optimization and Economical Theory. Progress, Moscow, 606 pp.Google Scholar
  44. Ito, E., and Matsui, Y. (1977) Silicate ilmenites and the post-spinel transformations, in High-Pressure Research, edited by M. H. Manghnani and S. Akimoto, pp. 193–208. Academic Press, New York.Google Scholar
  45. Ito, E., and Yamada, H. (1982) Stability relations of silicate spinels, ilmenites, and perovskites, in High Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp. 405–419. Center for Academic Publishing, Tokyo.Google Scholar
  46. Isaak, D. G., and Graham, E. K. (1976) The elastic properties of an almandine-spessartine garnet and elasticity in the garnet solid-solution series, J. Geophys. Res. 81, 2483.Google Scholar
  47. Jackson, I., and Ahrens, T. J. (1979) Shockwave compression of single-crystal forsterite, J. Geophys. Res. 84, 3039.Google Scholar
  48. Jeanloz, R., and Thompson, A. B. (1983) Phase transitions and mantle discontinuities, Rev. Geophys. Space Phys. 21, 51–74.Google Scholar
  49. Jordan, T. H., and Anderson, D. L. (1974) Earth structure from free oscillations and travel times, Geophys. J. Roy. Astronom. Soc. 36, 411–459.Google Scholar
  50. Karpov, I. K., Kiselev, A. I., and Letnikov, F. A. (1976) Computer Modelling of Natural Mineral-Formation. Nedra, Moscow, 256 pp.Google Scholar
  51. Kawada, K. (1977) The System Mg2SiO4-Fe2SiO4 at High Pressures and Temperatures and the Earth’s Interior. Ph.D. Thesis, Institute for Solid State Physics, University of Tokyo, 187 pp.Google Scholar
  52. Kieffer, S. W. (1980) Thermodynamics and lattice vibrations of minerals, 4, Application to chain and sheet silicates and orthosilicates, Rev. Geophys. Space Phys. 18, 862–886.Google Scholar
  53. Kitayama, K., and Katsura, T. (1968) Composition of fayalite and its standard free energy of formation, Chem. Soc. Jpn. J. 41, 525–528.Google Scholar
  54. Kolesnik, Yu. N., Nogteva, V. V., Archipenko, D. K., et al. (1978) Heat capacity in gros- sular in the temperature range 13–1300K and thermodynamics of pyropegrossular solid solution, Geochemistry, 5, 713.Google Scholar
  55. Korzhinskii, D. S. (1959)Physiochemical Basis of the Analysis of the Par agenesis of Minerals.Consultants Bureau, New York, 142 pp.Google Scholar
  56. Kraynov, S. R., Ryzhenko, B. N., and Shvarov, Yu. V. (1983) Possibilities and limitations of physico-chemical modelling of interaction water—rock in the solution of problems of formation of chemical composition of ground waters, Geochemistry 9, 1342–1359.Google Scholar
  57. Kumayawa, M., and Anderson, O. L. (1969) Elastic moduli, pressure derivatives, and temperature derivatives of single-crystal forsterite, J. Geophys. Res. 74, 5961.Google Scholar
  58. Kumazawa, M., Sawamoto, H., Ohtani, E., and Masaki, K. (1974) Postspinel phase of forsterite and evolution of the Earth’s mantle, Nature (London) 247, 356–358.Google Scholar
  59. Kurepin, V. A. (1981) Thermodynamics of Minerals of Variable Composition and Geological Thermobarometry. Naukova Dumka, Kiev, 160 pp.Google Scholar
  60. Kuskov, O. L. (1984) Equations of state of α-, γ-Fe2SiO4 and FeSiO3 and their phase relations at high pressures, Geochemistry 8, 1119–1124.Google Scholar
  61. Kuskov, O. L., and Galimzyanov, R. F. (1982a) Equations of state and standard therma- dynamic functions of α, β-, γ-Mg2SiO4, Geochemistry 8, 1172–1182.Google Scholar
  62. Kuskov, O. L., and Galimzyanov, R. F. (1982b) Equations of state of A12O3, CaO, spinel, diopside, and garnets under superhigh pressures and temperatures, Geochemistry 11, 1586–1597.Google Scholar
  63. Kuskov, O. L., and Galimzyanov, R. F. (1984) Calculation of equilibrium MgAl2O4 = MgO + A12O3 taking into account the cation disordering of spinel, compressibility and thermal expansion of phases, Geochemistry 1, 101–106.Google Scholar
  64. Kuskov, O. L., and Khitarov, N. I. (1982) Thermodynamics and Geochemistry of the Earth’s Core and Mantle. Nauka, Moscow, 279 pp.Google Scholar
  65. Kuskov, O. L., Galimzyanov, R. F., Kalinin, V. A., Bubnova, N. Ja., and Khitarov, N. I. (1982) Construction of thermal equation of state of solids (periclase, coesite, stishovite) based on bulk modulus data and calculation of the coesite-stishovite phase equilibrium, Geochemistry 7, 984–1001.Google Scholar
  66. Kuskov, O. L., Galimzyanov, R. F., and Khitarov, N. I. (1983a) Phase relations in the MgO-FeO-CaO-Al2O3-SiO2 system in the mantle transition zone, Dokl. of Alad. Nauk USSR 270, 577–581 (in Russian).Google Scholar
  67. Kuskov, O. L., Galimzyanov, R. F., Truskinovsky, L. M., and Pil’chenko, V. A. (1983b) Reliability of thermodynamic calculations of chemical and phase equilibria at high pressures and temperatures, Geochemistry 6, 849–871.Google Scholar
  68. Kuskov, O. L., Galimzyanov, R. F., Khitarov, N. I., and Urusov, S. V. (1983c) Phase relations in the MgO-SiO2 system at P-T conditions of the mantle transition zone, Geochemistry 8, 1075–1091.Google Scholar
  69. Larimer, J. W. (1968) Experimental studies on the system Fe-Mg-SiO2-O2 and their bearing on the petrology of chondritic meteorites, Geochim. Cosmochim. Acta 32, 1187–1209.Google Scholar
  70. Leitner, B. J., Weidner, D. J., Liebermann, R. C. (1980) Elasticity of single-crystal pyrope and implications for garnet solid solution series, Phys. Earth Planet. Int. 22, 111.Google Scholar
  71. Levien, L., and Prewitt, C. T. (1981) High-pressure structural study of diopside, Amer. Mineral. 66, 315.Google Scholar
  72. Levien, L., Prewitt, C. T., and Weidner, D. J. (1979) Compression of pyrope, Amer. Mineral 64, 805.Google Scholar
  73. Levien, L., Weidner, D. J., and Prewitt, C. T. (1979) Elasticity of dropside, Phys. Chem. Minerals 4, 105.Google Scholar
  74. Liebermann, R. C. (1974) Elasticity of pyroxene-garnet and pyroxene-ilmenite phase transformations in germanates, Phys. Earth Planet. Int. 8, 361.Google Scholar
  75. Liebermann, R. C. (1975) Elasticity of olivine (α), beta (β), and spinel (γ) polymorphs of germanates and silicates, Geophys. J. 42, 899.Google Scholar
  76. Liebermann, R. C. (1976) Elasticity of ilmenites, Phys. Earth Planet. Int. 12, 5.Google Scholar
  77. Liebermann, R. C., and Ringwood, A. E. (1976) Elastic properties of anorthite and nature of the lunar crust, Earth Planet. Sci. Lett. 31, 69–79.Google Scholar
  78. Liebermann, R. C., and Ringwood, A. E. (1977) Some comments on the elasticity of stishovite determined by ultrasonic and high pressure X-ray diffraction techniques, in High-Pressure Research: Applications in Geophysics, edited by M. H. Manghnani and S. Akimoto, p. 343. Academic Press, New York.Google Scholar
  79. Liebermann, R. C., Jones, L. E. A., and Ringwood, A. E. (1977) Elasticity of aluminate, titanate, stannate and germanate compounds with the perovskite structure, Phys. Earth Planet. Int. 14, 165.Google Scholar
  80. Liu, L. (1974a) Disproportionation of kyanite to corundum plus stishovite at high pressure and temperature, Earth Planet. Sci. Lett. 24, 224–228.Google Scholar
  81. Liu, L. (1974b) Silicate pervoskite from phase transformations of pyrope-garnet at high pressure and temperature, Geophys. Res. Lett. 1, 277–280.Google Scholar
  82. Liu, L. (1978) A new high-pressure phase of Ca2Al2SiO7 and implications for the Earth’s interior, Earth Planet. Sci. Lett. 40, 401–406.Google Scholar
  83. Liu, L. G. (1979a) Phase transformations and constitution of the deep mantle, in The Earth: Its Origin, Structure and Evolution, edited by M. W. McElhinny, pp. 177–202. Academic Press, London.Google Scholar
  84. Liu, L. G. (1979b) Calculations of high pressure phase transitions in the system MgO-SiO2 and implications for mantle discontinuties, Phys. Earth Planet. Int. 19, 319–327.Google Scholar
  85. Liu, L. G. (1979c) High pressure phase transformations in the joins Mg2SiO4 and MgO-CaSiO3, Contrib. Mineral. Petrol. 69, 245–247.Google Scholar
  86. Liu, L. G. (1979d) High pressure phase transformations in the system CaSiO3-Al2O3, Earth Planet. Sci. Lett. 43, 331–335.Google Scholar
  87. Liu, L. G. (1979e) The system enstatite-wollastonite at high pressure and temperature, with emphasis on diopside, Phys. Earth Planet. Int. 19, P15–P18.Google Scholar
  88. Liu, L. G. (1980) The equilibrium boundary of spinel-corundum + periclase: a calibration curve for pressures above 100 kbar, High Temperatures-High Pressures, 12, 217–220.Google Scholar
  89. Liu, L., and Ringwood, A. E. (1975) Synthesis of a perovskite-type polymorph of CaSiO3, Earth Planet. Sci. Lett. 28, 209–211.Google Scholar
  90. Lukas, H. L., Weiss, J. and Henig, E.-Th. (1982) Strategies for the calculation of phase diagrams, CALPHAD, 6, 229–251.Google Scholar
  91. Mao, H.-K., and Bell, P. M. (1971) High-pressure decomposition of spinel (Fe2SiO4), Carnegie Inst. Wash. Yearbk. 70, 176–178.Google Scholar
  92. Mao, H.-K., and Bell, P. M. (1979) Equations of state of MgO and ε-Fe under static pressure conditions, Geophys. Res. 84, 4533–4536.Google Scholar
  93. Mao, H.-K., Yagi, T., and Bell, P. M. (1977) Mineralogy of the earth’s deep mantle: quenching experiments at high pressure and temperature, Carnegie Inst. Wash. Yearbk. 76, 502–504.Google Scholar
  94. McCammon, C. A., and Liu, L. (1984) The effects of pressure and temperature on non- stoichiometric wiistite, FexO: The iron-rich phase boundary, Phys. Chem. Minerals 10, 106–113.Google Scholar
  95. Miyubami, S., Ohtani, A., Kawai, N. (1976) High-pressure X-ray diffraction studies on β- and γ-Mg2SiO4, Phys. Earth Planet. Int. 10, 177.Google Scholar
  96. Morse, S. A. (1979) Reaction constants for En-Fo-Sil equilibria: an adjustment and some applications, Amer. J. Sci. 279, 1060–1069.Google Scholar
  97. Mulargia, F., and Boschi, E. (1980) The problem of the equation of state in the Earth’s interior, iti Physics of the Earth’s Interior, pp. 337–361. North Holland Publ. Co., Amsterdam.Google Scholar
  98. Nafziger, R. H., and Muan, A. (1967) Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO-“FeO”-SiO2, Amer. Mineral. 52, 1364–1385.Google Scholar
  99. Naumov, G. B., Ryzenko, B. N., and Khodakovsky, I. L. (1971) Handbook of Thermo-dynamical Values. Moscow, Atomizdat, 240 pp.Google Scholar
  100. Navrotsky, A. (1980) Lower mantle phase transitions may generally have negative pressure-temperature slopes, Geophys. Res. Lett. 7, 709–711.Google Scholar
  101. Navrotsky, A., Pintchovski, F. S., and Akimoto, S. (1979) Calorimetric study of the stability of high pressure phases in the systems CoO-SiO2 and “Fe0”-SiO2 and calculation of phase diagrams in MO-SiO2 systems, Phys. Earth and Planet. Int. 19, 275–292.Google Scholar
  102. O’Connel, R. J., and Graham, E. K. (1971) Equation of state of stoichiometric spinel to 10 kbar and 900°K, Trans. Amer. Geophys. Union 52, 319.Google Scholar
  103. Ohtani, E. (1979) Melting relation of Fe2Si04 up to about 200 kbar, J. Phys. Earth 27, 189–208.Google Scholar
  104. Ohtani E., Sawamoto, H., Masaki, K., and Kumazawa, M. (1974) Decomposition of spinel MgAl2O4 at extremely high pressure, in Proc. 4th Int. Conf. on High Pressure, pp. 186–189, Kyoto.Google Scholar
  105. Olinger, B. (1977) A comparison of α-quarty shock compression data with recent determinations of the bulk modulus of stishovite, in High-Pressure Research: Applications in Geophysics, edited by M. H. Manghnani and S. Abimoto, p. 335. Academic Press, New York.Google Scholar
  106. Ostrovsky, I. A. (1979) The thermodynamics of substances at very high pressures and temperatures and some mineral reactions in the Earth’s mantle, Phys. Chem. Minerals 5, 105–118.Google Scholar
  107. Ringwood, A. E. (1975) Composition and petrology of the Earth’s mantle. McGraw-Hill, New York.Google Scholar
  108. Ringwood, A. E. (1981) The Composition and Petrology of the Earth’s Mantle, Nedra, Moscow, 584 pp.Google Scholar
  109. Ringwood, A. E., and Major, A. (1971) Synthesis of majorite and other high pressure garnets and perovskites, Earth Planet. Sci. Lett. 12, 411–418.Google Scholar
  110. Robie, R. A., Hemingway, B. S., and Fisher, J. R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298K and 1 bar Pressure and at Higher Temperatures. U.S. Geol. Surv. Bull. 1452, 456 pp.Google Scholar
  111. Robie, R. A., Finch, C. B. and Hemingway, B. S. (1982) Heat capacity and entropy of fayalite (Fe2SiO4) between 5.1 and 383K: comparison of calorimetric and equilibrium values for the QFM buffer reaction, Amer. Mineral. 67, 463.Google Scholar
  112. Robinson, G. R., Haas, J. L., Schafer, C. M., and Haselton, H. T. (1982a) Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O- CO2, CaO-Al2O3-SiO2-H2O-CO2 and Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components, Open- File Report 83-79, U.S. Geol. Suwo, 429 pp.Google Scholar
  113. Robinson, G. R., Haas, J. L., Schafer, C. M., and Haselton, H. T. (1982b) Thermodynamic and thermophysical properties of selected phases in the MgO-SiO2-H2O- CO2, CaO-Al2O3-SiO2-H2O-CO2 and Fe-FeO-Fe2O3-SiO2 chemical systems, with special emphasis on the properties of basalts and their mineral components. Open-File Rept. 83-79, 429 pp.Google Scholar
  114. Romain, J. P., Migault, A., and Jacquesson, J. (1976) Relation between Grüneisen ratio and the pressure dependence of Poisson’s ratio for metals, J. Phys. Chem. Solids 37, 1159.Google Scholar
  115. Sawamoto, H., Ohtani, E., and Kumazawa, M. (1974) High pressure decomposition of γ-Fe2SiO4, Proc.4th Int. Conf. High Pressures, pp. 194–201, Kyoto.Google Scholar
  116. Saxena, S. K., and Eriksson, G. (1983) Theoretical computation of mineral assemblages in pyrolite and lherzolite, J. Petrol 24, 538–555.Google Scholar
  117. Schreinemakers, F. A. (1948) In-, Mono- and Divariant Equilibria. Moscow, 214 pp.Google Scholar
  118. Shankland, T. J., and Chung, D. H. (1974) General relationships among sound speeds, Phys. Earth Planet. Int. 8, 129.Google Scholar
  119. Shvarov, Yu. V. (1981) General equilibrium criterion for the isobaric-isothermic model of a chemical system, Geochemistry 7, 981–988.Google Scholar
  120. Soda, N., Schreiber, E., and Anderson, O. L. (1966) Estimation of bulk modulus and sound velocities of oxides at very high temperatures, J. Geophys. Res. 71, 5315.Google Scholar
  121. Son, P. R., and Bartels, R. A. (1972) CaO and SiO single crystal elastic constants and their pressure derivatives, J. Phys. Chem. Solids 33, 819.Google Scholar
  122. Stacey, F. (1977) A thermal model of the Earth, Phys. Earth Planet. Int. 15, 341–348.Google Scholar
  123. Stacey, F., Brennan, B. J., and Irvine, R. D. (1981) Finite strain theories and comparisons with seismological data, Geophys. Surv. 3, 189–232.Google Scholar
  124. Spetzler, H. (1970) Equation of state of poly crystalling and single-crystal MgO to 8 kilobars and 800K. Geophys. Res. 75, 2070–2073.Google Scholar
  125. Suito, K. (1977) Phase relations of pure Mg2SiO4 up to 200 kilobars, in High Pressure Research—Applications to Geophysics, edited by M. Manghnani and S. Akimoto, pp. 255–266. Academic Press, New York.Google Scholar
  126. Suito, K., and Kawai N. (1979) Studies of phase equilibrium in Mg2SiO4 up to pressures higher than 20 GPa, in High-Pressure Science and Technology, Vol. 2, edited by K. D. Timmerhaus and M. S. Barber, pp. 53–57. Plenum Publ. Co., New York.Google Scholar
  127. Sumino, Y. (1979) The elastic cosnstants of Mn2SiO4, Fe2SiO4, and Co2SiO4 and the elastic properties of olivine group minerals at high temperature, J. Phys. Earth 27, 209.Google Scholar
  128. Sumino, Y., Nishiyawa, O. (1978) Temperature variation of elastic constants of pyropealmandine garnets, J. Phys. Earth 26, 239.Google Scholar
  129. Suyuki, I., Ohtani, E., and Kamasawa, M. (1979) Thermal expansion of γ-Mg2SiO4, Phys. Earth 27, 53.Google Scholar
  130. Suyuki, I., Ohtani, E., and Kumasawa, M. (1980) Thermal expansion of modified spinel, β-Mg2SiO4, J. Phys. Earth 28, 273.Google Scholar
  131. Suyuki, I., Seya, K., Takei H., and Sumino, Y. (1981) Thermal expansion of fayalite, Fe2SiO4, Phys. Chem. Minerals 7, 60.Google Scholar
  132. Suzuki, I. (1975) Thermal expansion of periclase and olivine and their anharmonic properties. J. Phys. Earth 23, 145–150.Google Scholar
  133. Termicheskie Constanty (Thermic Constants of Substances) (1972), edited by V. P. Glushko et al., Vol. V II VINITY, Moscow.Google Scholar
  134. Thomsen, L. (1970) On the fourth-order anharmonic equation of state of solids, Phys. Chem. Solids 31, 2003–2016.Google Scholar
  135. Toulonbian, Y. S., and Ho, C. Y. (1977) Thermophysical Properties, TRRC Data Series Vol. 13, Thermal Expansion, Nonmetallic Solids. Plenum Press, New York.Google Scholar
  136. Truskinovsky, L. M., Kuskov, O. L., and Khitarov, N. I. (1983) Adiabatic gradient in the mantle transition zone, Geochemistry 9, 1222–1238.Google Scholar
  137. Truskinovsky, L. M., Kuskov, O. L., and Khitarov, N. I. (1984) Structure of adiabat in the mantle transition zone. Dokl. Ad. Nauk USSR 274, 1064–1070 (in Russian)Google Scholar
  138. Ullman, W., and Pankov, V. L. (1970) A new structure of the equation of state and its application in high-pressure physics and geophysics, Veröff. Zentralinst. Phys. Erde (Potsdam) 41, 1–201.Google Scholar
  139. Urusov, V. S., and Kuskov, O. L. (1984) Crystal-chemistry and thermodynamics of mineral phases in the Earth’s mantle, in 27th International Geological Congress, Section C.10, pp. 94–105. Mineralogy, Moscow.Google Scholar
  140. Vinnik, L. P., Avetisjan, R. A., and Mihailova, N. G. (1983) Heterogeneities in the mantle transition zone from observations of P-to-SV converted waves, Phys. Earth Planet. In. 33, 149–163.Google Scholar
  141. Wachtman, J. B., Tefft, W. E., and Lam, D. G. (1960) Elastic constants of single-crystal corundum at room temperature, J. Res. NBS 64A, 213.Google Scholar
  142. Walck, M. C. (1984) The P-wave upper mantle structure beneath an active spreading center: the Gulk of California, Geophys. J. Roy. Astronom. Soc. 76, 697–723.Google Scholar
  143. Watanabe, H. (1982) Thermochemical properties of synthetic high pressure compounds relevant to the Earth’s mantle, in High-Pressure Research in Geophysics, edited by S. Abemoto and M. H. Manghnani, pp. 441–464. Academic Publishers, Tokyo.Google Scholar
  144. Weaver, J. S., Chysman, D. W., and Takahashi, T. (1979) Comparison between thermochemical and phase stability data for the quarty-stishovite transformations, Amer. Mineral, 64, 604.Google Scholar
  145. Weidner, D. J., and Carlton, H. R. (1977) Elasticity of coesite, J. Geophys. Res. 82, 1334.Google Scholar
  146. Weidner, D. J., Wang H., and Ito, J. (1978) Elasticity of orthoenstatite, Phys. Earth Planet. Int. 17, 7.Google Scholar
  147. Westrum, E. F., Essene, E. J., and Perkins, D. (1979) thermophysical properties of the garnet, grossular: Ca3Al2Si3012, Chem. Thermodynam. 11, 57.Google Scholar
  148. Williams, R. J. (1971) Reaction constants in the system Fe-MgO-SiO2-O2 at 1 atm between 900° and 1300°C: Experimental results, Amer. J. Sci. 270, 334–360.Google Scholar
  149. Wood, B. J., and Fraser, D. G. (1981) Elementary Thermodynamics for Geologists (Transl. from English). Mir, Moscow, 184 pp.Google Scholar
  150. Yagi, T., Bell, P. M., and Mao, H. K. (1979a) Phase relations in the system MgO- FeO-SiO2 between 150 and 700 kbar at 1000°C, Carnegie Inst. Wash. Yearbk. 78, 614–618.Google Scholar
  151. Yagi, T., Mao, H. K., and Bell, P. M. (1979b) Hydrostatic compression of MgSiO3 of perovskite structure, Ann. Rept. Dir., Geophys. Lab., Carnegie Inst. Wash. 78, 613.Google Scholar
  152. Zharkov, V. N., and Kalinin, V. A. (1968) Equations of State of Solids at High Temperatures and Pressures. Nauka, Moscow, 312 pp.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • O. L. Kuskov
  • R. F. Galimzyanov

There are no affiliations available

Personalised recommendations