The Ordered Structure of the Crystalline Lens

  • J. R. Kuszak
  • B. A. Bertram
  • J. L. Rae
Conference paper
Part of the Cell and Developmental Biology of the Eye book series (EYE)

Abstract

The function of the crystalline lens is to focus light onto the retina. Consequently, the lens must be transparent. Lens transparency is in part made possible by the highly ordered arrangement of its uniform, terminally differentiated cells. It is an oversimplification to describe the lens as a biconvex spheroid comprised of crescent-like cells arranged end to end around a polar axis. To comprehend lens architecture it is necessary to consider embryonic lens development, the formation of primary and secondary fiber cells and the structure of lens sutures.

Keywords

Migration Attenuation Hexagonal Retina Germinal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barabaschew, P. 1892. Bietrag zur anatomie der lense. Albrecht von Graefe’s Archives zur Ophthalmologic 38: 1–14.Google Scholar
  2. Beebe, D. C., M.C.. Johnson, D. E. Feagans, and P. J. Compart. 1980. The mechanism of cell elongation during lens fiber cell differentiation. In “Ocular Size and Shape Regulation During Development.” ( Hilfer, S. R. and J. B. Sheffield., eds. ) pp 79–98.Google Scholar
  3. Benedetti, E. L., I. Dunia, C. J. Bentzel, A. J. M. Vermorken, M. Kibbelaar and H. Bloemendal. 1976. A portrait of plasma membrane specializations in lens epithelium and fibers. Biochim. et Biophys. Acta 457: 353–384.Google Scholar
  4. Bloemendal, H., A. Zweers, F. Vermorken, I. Dunia and E. L. Benedetti. 1972. The plasma membranes of eye lens fibers. Biochemical and structural characterization. Cell Differ. 1: 91–106.PubMedCrossRefGoogle Scholar
  5. Costello, M. J., T. J. Mcintosh, and J. D. Robertson. 1984. Square-array fiber cell membranes in the mammalian lens. In “Proceedings of the 42nd Annual Meeting of the Electron Microscopy Society of America.” ( Bailey, G. W., ed. ) pp 126–29.Google Scholar
  6. Coulombre, J. and A. J. Coulombre. 1963. Lens development: Fiber elongation and lens orientation. Science 142: 1489–490.PubMedCrossRefGoogle Scholar
  7. de Jong, W. W. 1981. Evolution of lens and crystallines. In “Biology of the Eye Lens.” ( Bloemendal, H., ed) J. Wiley and Sons Inc., New York.Google Scholar
  8. Dickson, D. H. and G. W. Crock. 1972. Interlocking patterns of primate lens fibers. Inves. Ophthalmol. 13: 809–815.Google Scholar
  9. Dickson, D. H. and G. W. Crock. 1975. Fine structure of primate lens fibers. In “Cataract and Abnormalities of the Lens.” ( Bellows, J. G., ed.) pp 49–58. Grune and Stratton, New York.Google Scholar
  10. Duke-Elder, S. and K. C. Wybar. 1961. The refractive media: the lens. In “System of Ophthalmology.” vol. II. ( Duke-Elder, S., ed.) pp 309–324. The C. V. Mosby Co., St. Louis.Google Scholar
  11. Duke-Elder, S. and D. Abrams. 1970. The refraction of light. In “Systems of Ophthalmology.” vol. V. ( Duke-Elder, S., ed.) pp 74–78. C. V. Mosby Co. St. Louis.Google Scholar
  12. Farnsworth, P. N., S. C. J. Fu, P. G. Burke and I Bahaia. 1974. Ultrastructure of rat lens fibers. Invest. Ophthalmol. 13: 274–279.Google Scholar
  13. Gallati, J. 1923. Die relativen Dickenwerte von Rinde und Kern der menschlichen Linse in verschiedenen Lebensaltern. Atschr. f. Augenh. ( Berlin ) 51: 133–144.Google Scholar
  14. Goodenough, D. A., D. L. Paul and K. E. Culbert. 1978. Correlative gap junction ultrastructure. Birth Defects. 14 (2): 83–97.PubMedGoogle Scholar
  15. Goodenough, D. A. 1979. Lens gap junctions: A structural hypothesis for nonregulated low-resistance intercellular pathways. Invest. Ophthalmol. Vis. Sci. 11: 1104–1122.Google Scholar
  16. Hammar, H. 1965. An autoradiographic study on cell migration in the eye lens epithelium from normal and alloxan diabetic rats. Acta. Ophthal. (Kobenhavn) 14 (2): 83–97.Google Scholar
  17. Hanna, C. and J. E. O’Brien. 1961. Cell production and migration in the epithelial layer of the lens. Arch. Ophthal. ( Chicago ) 66: 103–107.Google Scholar
  18. Hansson, H. A. 1970. Scanning electron microscopy of lens of the adult rat. Z. Zellforsch. 107: 187–198.PubMedCrossRefGoogle Scholar
  19. Harding, C. V., J. R. Reddan, N. J. Unakar and M. Bagchi. 1971. The control of cell division in the ocular lens. Int. Rev. Cytol. 31: 215–300.PubMedCrossRefGoogle Scholar
  20. Hollenberg, M. J., J. P. H. Wyse, and B. J. Lewis. 1976. Surface morphology of lens fiber from eyes of normal and microphthalmic (Browman) rats. Cell Tissue Res. 167: 425–428.PubMedCrossRefGoogle Scholar
  21. Hosch, G . 1901. Ein Fall von sog. cortikaler Hemianopsie und Alexie.Ztschr. f. Augenh. ( Berlin ) 5: 5–14.Google Scholar
  22. Hoyer, H. E. 1982. Scanning electron-microscopic study of lens fibers of the pig. Cell Tissue Res. 224 (1): 225–232.PubMedCrossRefGoogle Scholar
  23. Kuszak, J., H. Maisel and C. V. Harding. 1978. Gap junctions of chick lens fiber cells. Exp. Eye Res. 27: 495–498.PubMedCrossRefGoogle Scholar
  24. Kuszak, J., J. Alcala, and H. Maisel. 1980. The surface morphology of embryonic and adult chick lens-fiber cells. Am. J. Anat. 159: 95–410.CrossRefGoogle Scholar
  25. Kuszak, J. R. and J. L. Rae. 1982. Scanning electron microscopy of the frog lens. Exp. Eye Res. 35: 499–515.PubMedCrossRefGoogle Scholar
  26. Kuszak, J. R., M. S. Macsai and J. L. Rae. 1983. Stereo scanning electron microscopy of the crystalline lens. Scan. Elec. Micr. 111: 1415–426.Google Scholar
  27. Kuszak, J. R., B. A. Bertram, M. S. Macsai and J. L. Rae. 1984. Sutures of the crystalline lens: A review. Scan. Elec. Micr. 111: 1369–1378.Google Scholar
  28. Kuwabara, T . 1970. Surface structure of the eye tissue. Proc. III Annual Scanning Electron Microscope Symposium, pp 185–192. Chicago.Google Scholar
  29. Kuwabara, T. 1975. The maturation of the lens cell: A morphological study. Exp. Eye Res. 20: 427–443.PubMedCrossRefGoogle Scholar
  30. Langman, J. 1959a. The first appearance of specific antigens during the induction of the lens. J. Embryol. and Exper. Morphol. 7: 193–202.Google Scholar
  31. Langman, J. 1959b. Appearance of antigens during development of the lens. J. Bmbryol. and Exper. Morphol. 7: 264–274.Google Scholar
  32. McKeehan, M. S. 1951. Cytological aspects of embryonic lens induction in the chick. J. Exper. Zool. 117: 31–64.CrossRefGoogle Scholar
  33. Messier, B. and C. P. LeBlond. 1960. Cell proliferation and migration as revealed by radioautoradiography after injection of thymidine-3H into male rats and mice. Amer. J. Anat. 106: 247–285.PubMedCrossRefGoogle Scholar
  34. Mikulicich, A. and R. W. Young. 1963. Cell proliferation and displacement in the lens epithelium of young rats injected with tritiated thymidine. Invest. Ophthal. 2: 344–354.PubMedGoogle Scholar
  35. Rabl, C. 1900. Concerning the structure and development of the lens. Atschr. F. Wissenensch. Zool. 66: 1–138.Google Scholar
  36. Rochon-Duvigneaud, A . 1943. “The Eyes and Vision of Vertebrates.” Masson and Cie., Paris.Google Scholar
  37. Sakuragawa, M., T. Kuwabara, J. Kinoshita, and H.N. Fukui. 1975. Swelling of the lens fibers. Exp. Eye Res. 21: 381–394.PubMedCrossRefGoogle Scholar
  38. Smelser, G. K. 1965. Embryology and morphology of the lens. In: Symposium on the lens. J. E. Harris (Ed.), The C. V. Mosby Co., St. Louis, Mo., 22–34.Google Scholar
  39. van Doorenmaalen, W. J . 1981. “The developmental mechanics of the lens.” ( Bloemendal, W., ed. ) pp 415–435.Google Scholar
  40. Vogt, A . 1921. Interstitial spaces of lens under certain forms of illumination. Schweiz. Med. Wehnschr. 51: 265–268.Google Scholar
  41. Willenkens, B. and G. Vrensen. 1981. The three-dimensional organization of lens fibers in the rabbit. A scanning electron microscopic reinvestigation. Albrecht von Graefe’s Arch. Klin. Exp. Ophthal. 216 (4): 275–289.Google Scholar
  42. Woerderman, M. W. 1962. Eye lens development and some of its problems. Proc. Koninklijke Nederlandse Akademie van Wetenschappen, series C, 65: 145.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • J. R. Kuszak
  • B. A. Bertram
  • J. L. Rae

There are no affiliations available

Personalised recommendations