Skip to main content

Robustness in Signal Detection

  • Chapter
Communications and Networks

Abstract

Signal detection systems frequently must operate in environments that are difficult to characterize with precise statistical models, and thus it is of interest to develop signal detection procedures that are robust against (i.e., insensitive to) deviations in the statistical behavior of signals and noise. During the past two decades there has been considerable work on the problem of designing such procedures, and in this chapter we present a survey of some of the principal developments in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.J. Huber, A robust version of the probability ratio test, Ann. Math. Statist., Vol. 36, pp. 1753–1758, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  2. S.A. Kassam, Robust hypothesis testing for bounded classes of probability densities, IEEE Trans. Inform. Theory, Vol IT–27, pp. 242–247, 1981.

    Google Scholar 

  3. P.J. Huber, Robust confidence limits, Z. Wahr. verw. Geb., Vol. 10, pp. 269–278, 1968.

    Article  MATH  Google Scholar 

  4. K.S. Vastola and H.V. Poor, On the p-point uncertainty class, IEEE Trans. Inform. Theory, Vol. IT-29, pp. 316–327, 1984.

    Google Scholar 

  5. H. Rieder, Least favorable pairs for special capacities, Ann. Statist., Vol. 5, pp. 909–921, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  6. P.J. Huber and V. Strassen, Minimax tests and the Neyman-Pearson lemma for capacities, Ann. Statist., Vol. 1, pp. 251–263, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  7. N.M. Khalfina and L.A. Khalfin, On a robust version of the likelihood ratio test, SIAM Th. Prob. Appl., Vol. 20, pp. 199–202, 1975.

    Article  MATH  Google Scholar 

  8. T. Bednarski, On solutions of minimax test problems for special capacities, Z. Wahr. verw. Geb., Vol. 58, pp. 397–405, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  9. V.P. Kuznetsov, Stable rules for discriminating hypotheses, Prob. Inform. Trans., Vol. 18, pp. 41–51, 1982.

    MATH  Google Scholar 

  10. P.J. Huber, Robust estimation of a location parameter, Ann. Math. Statist., Vol. 35, pp. 73–101, 1964.

    Article  MathSciNet  MATH  Google Scholar 

  11. P.J. Huber, Robust Statistics, New York, NY: Wiley, 1981.

    Book  MATH  Google Scholar 

  12. R.D. Martin and S.C. Schwartz, Robust detection of a known signal in nearly Gaussian noise, IEEE Trans. Inform. Theory, Vol. IT–17, pp. 50–56, 1971.

    Google Scholar 

  13. S.A. Kassam and J.B. Thomas, Asymptotically robust quantization for detection, IEEE Trans. Inform. Theory, Vol. IT–22, pp. 22–26, 1976.

    Google Scholar 

  14. H.V. Poor and J.B. Thomas, Asymptotically robust quantization for detection, IEEE Trans. Inform. Theory, Vol. IT–24, pp. 222–229, 1978.

    Google Scholar 

  15. A.H. El-Sawy and V.D. VandeLinde, Robust detection of known signals, IEEE Trans. Inform. Theory, Vol. IT–23, pp. 722–727, 1977.

    Google Scholar 

  16. A.H. El-Sawy and V.D. VandeLinde, Robust sequential detection of signals in noise, IEEE Trans. Inform. Theory, Vol. IT–25, pp. 346–353, 1979.

    Google Scholar 

  17. P.A. Kelly, Robust estimation and detection of signals with arbitrary parameters, Proc. 21st Annual Allerton Conf Comm., Contr., Comp. pp. 602–609, 1983.

    Google Scholar 

  18. A.H. El-Sawy, Detection of signals with unknown phase, Proc. 17 th Annual Allerton Conf. Comm., Contr., and Comp., pp. 152–165, 1979.

    Google Scholar 

  19. H.V. Poor, Signal detection in weakly dependent noise - Part II: Robust detection, IEEE Trans. Inform. Theory, Vol. IT–28, pp. 744–752, 1982.

    Google Scholar 

  20. G.V. Moustakides and J.B. Thomas, Min-max detection of weak signals in ø-mixing noise, IEEE Trans. Inform. Theory, Vol. IT–30, pp. 529–537, 1984.

    Google Scholar 

  21. S.A. Kassam, G. Moustakides and J.G. Shin, Robust detection of known signals in asymmetric noise, IEEE Trans. Inform. Theory, Vol. IT–28, pp. 84–91, 1982.

    Google Scholar 

  22. R.D. Martin, Robust estimation of signal parameters with dependent data, Proc. 21st IEEE Conf. Dec. Contr., pp. 433–436, 1982.

    Google Scholar 

  23. W.L. Root, Stability in signal detection problems, in Proc. Symp. Appl. Math., Vol. 16, Providence, RI: American Math. Society, 1964.

    Google Scholar 

  24. F.R. Hampel, A general qualitative definition of robustness, Ann. Math. Statist., Vol. 42, pp. 1887–1896, 1971.

    Article  MathSciNet  MATH  Google Scholar 

  25. W.A. Gardner, A unifying view of second-order measures of quality for signal classification, IEEE Trans. Comm., Vol. COM–28, pp. 807–815, 1980.

    Google Scholar 

  26. L.H. Zetterberg, Signal detection under noise interference in a game situation, IEEE Trans. Inform. Theory, Vol. IT–8, pp. 47–57, 1962.

    Google Scholar 

  27. V.P. Kutznetsov, Synthesis of linear detectors when the signal is inexactly given and the properties of the normal noise are incompletely known, Radio Eng. Electron. Phys., (English Transl.), Vol. 19, pp. 65–73, 1974.

    Google Scholar 

  28. V.P. Kuznetsov, Stable detection when the signal and spectrum of normal noise are inaccurately known, Telecomm. Radio Eng., (English Transl.), Vol. 30–31, pp. 58–64, 1976.

    Google Scholar 

  29. S.A. Kassam, T.L. Lim and L.J. Cimini, Two dimensional filters for signal processing under modeling uncertainty, IEEE Trans. Geosci. Elec., Vol. GE–18, pp. 331–336, 1980.

    Google Scholar 

  30. C.T. Chen and S.A. Kassam, Robust multi-input matched filters, Proc. 19th Annual Allerton Conf. on Comm., Contr., Comp., pp. 586–595, 1981.

    Google Scholar 

  31. R.Sh. Aleyner, Synthesis of stable linear dectectors for an inaccurately known signal, Radio Eng. Electron. Phys. (English Transl.), Vol. 22, pp. 142–145, 1977

    Google Scholar 

  32. M.V. Burnashev, On the minimax detection of an inaccurately known signal in a white Gaussian noise background, Theor. Prob. Appl, Vol. 24, pp. 107–119, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  33. S. Verdu and H.V. Poor, Minimax robust discrete-time matched filters, IEEE Trans. Comm., Vol. COM–31, pp. 208–215, 1983.

    Google Scholar 

  34. S. Verdu and H.V. Poor, Signal selection for robust matched filtering, IEEE Trans. Comm., Vol. COM–31, pp. 667–670, 1983.

    Google Scholar 

  35. H.V. Poor, Robust matched filters, IEEE Trans. Inform. Theory, Vol. IT–29, pp. 677–687, 1983.

    Google Scholar 

  36. S. Verdu and H.V. Poor, On minimax robustness: A general approach and applications, IEEE Trans. Inform. Theory, Vol. IT–30, pp. 328–340, 1984.

    Google Scholar 

  37. D. Slepian, Indistinguishable signals, Proc. IEEE, Vol. 64, pp. 292–300, 1976.

    Article  MathSciNet  Google Scholar 

  38. C.R. Baker, Optimum quadratic detection of a random vector in Gaussian noise, IEEE Trans. Comm., Vol. COM–14, pp. 802–805, 1966.

    Google Scholar 

  39. H.V. Poor, Robust decision design using a distance criterion, IEEE Trans. Inform. Theory, Vol. IT–26, pp. 575–587, 1980.

    Google Scholar 

  40. C.J. Masreliez and R.D. Martin, Robust Bayesian estimation for the linear model and robustifying the Kalman filter, IEEE Trans. Auto. Contr., Vol. AC–22, pp. 361–371, 1977.

    Google Scholar 

  41. 41]S.A. Kassam and T.L. Lim, Robust Wiener filters, J. Franklin Inst., Vol. 304, pp. 171–185, 1977.

    Article  MATH  Google Scholar 

  42. 42]K.S. Vastola and H.V. Poor, Robust Wiener-Kolmogorov theory, IEEE Trans. Inform. Theory, Vol. IT–30, pp. 316–327, 1984.

    Google Scholar 

  43. 43]S.A. Kassam and H.V. Poor, Robust techniques for signal processing: A survey, Proc. IEEE, Vol. 73, March 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Poor, H.V. (1986). Robustness in Signal Detection. In: Blake, I.F., Poor, H.V. (eds) Communications and Networks. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4904-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4904-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9354-5

  • Online ISBN: 978-1-4612-4904-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics