Advertisement

Special Pulse Sequences and Two-Dimensional NMR Spectroscopy

  • Atta-ur-Rahman

Abstract

One of the most dramatic advances in recent years has been the development of several new pulse sequences, made possible by the advent of dedicated microcomputers, which have allowed precise manipulations of pulse angles, introduction of delays between pulses, and rapid Fourier transformations. These have heralded the advent of a number of extremely powerful procedures among which may be mentioned: (a) new pulse sequences for the unambiguous assignments of methyl, methylene, methine, and quaternary carbon atoms, side—stepping the difficulties associated with the overlapping of multiplets in the normal off—resonances measurements. Examples are APT, DEPT, ADEPT, etc.; (b) two—dimensional NMR spectroscopy for observing couplings between protons, between protons and carbon atoms, and more recently between carbon atoms themselves; and (c) precise measurements of nuclear Overhauser enhancements by NOE difference measurements involving alternate recording of normal and NOE enhanced spectra, and automatic computer—assisted subtractions which result in measurements of even small enhancements, which were previously not possible.

Keywords

Pulse Sequence Magnetization Vector Cross Peak Free Induction Decay Quaternary Carbon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Recommended Reading

  1. 1.
    G.C. Levy, Topics in Carbon-13 NMR Spectroscopy, Wiley-Interscience, New York (1984).Google Scholar
  2. 2.
    J.W. Cooper, Spectroscopic Techniques for Organic Chemists, John Wiley and Sons, New York (1980).Google Scholar
  3. 3.
    D.Shaw, Pulsed Fourier Transform NMR Spectroscopy, Elsevier Scientific Publishing Co., Amsterdam (1979).Google Scholar
  4. 4.
    F.W. Wehrli and T. Wirthlin, Interpretation of Carbon-13 NMR Spectra, Heyden and Son Ltd, London (1978).Google Scholar
  5. 5.
    E. Breitmaier and W. Voelter, 13 C-NMR Spectroscopy, Verlag Chemie, Weinheim (1978).Google Scholar
  6. 6.
    C. Brevard and P. Granger, Handbook of High Resolution Multinuclear NMR, John Wiley and Sons. New York (1981).Google Scholar
  7. 7.
    G.C. Levy, R.L. Lichter, and G.L. Nelson, Carbon-13 Nuclear Magnetic Resonance Spectroscopy, John Wiley and Sons, New York (1980).Google Scholar
  8. 8.
    H. Günther, NMR Spectroscopy, John Wiley and Sons, New York (1980).Google Scholar
  9. 9.
    W.P. Aue, E. Bartholdi, and R.R. Ernst, Two—dimensional spectroscopy. Application to nuclear magnetic resonance, J. Chem. Phys. 64, 2229 (1976).CrossRefGoogle Scholar
  10. 10.
    G. Bodenhausen, R. Freeman, and D.L. Turner, Suppression of artifacts in two—dimensional J spectroscopy, J. Magn. Resonance 27, 511 (1977).Google Scholar
  11. 11.
    G. Bodenhausen, R. Freeman, G.A. Morris, R. Niedermeyer, and D.L. Turner, A simple approach to single—channel quadrature detection, J. Magn. Resonance 25, 559 (1977).Google Scholar
  12. 12.
    P. Bachmann, W.P. Aue, L. Muller, and R.R. Ernst, Phase separation in two- dimensional spectroscopy, J. Magn. Resonance 28, 29 (1977).Google Scholar
  13. 13.
    W.P. Aue, P. Bachmann, A. Wokaun, and R.R. Ernst, Sensitivity of two—dimensional NMR spectroscopy, J. Magn. Resonance 29, 523 (1978).Google Scholar
  14. 14.
    A. Kumar, Two—dimensional spin—echo NMR spectroscopy: a general method for calculation of spectra, J. Magn. Resonance 30, 227 (1978).Google Scholar
  15. 15.
    L. Muller and R.R. Ernst, Coherence transfer: Heteronuclear 2-D NMR spectra, Mol. Phys. 38, 963 (1979).CrossRefGoogle Scholar
  16. 16.
    M.H. Levitt and R. Freeman, Phase adjustment of two—dimensional NMR spectra, J. Magn. Resonance 34, 675 (1979).Google Scholar
  17. 17.
    G. Bodenhausen, S.P. Kempsell, and R. Freeman, Spinning sidebands in two—dimensional spin—echo spectra, J. Magn. Resonance 35, 337 (1979).Google Scholar
  18. 18.
    A. Bax, A.F. Mehlkopf, and J. Smidt, A fast method for obtaining 2D J-resolved absorption spectra, J. Magn. Resonance 40, 213 (1980).Google Scholar
  19. 19.
    L.D. Hall and S. Sukumar, A versatile strategy for the generalized acquisition of proton spin—echo data: measurement of partially relaxed two—dimensional J spectra, J. Magn. Resonance 40, 405 (1980).Google Scholar
  20. 20.
    G. Bodenhausen and D.L. Turner, Artifacts in two—dimensional J spectra, J. Magn. Resonance 41, 200 (1980).Google Scholar
  21. 21.
    S. Brownstein, Slicing and projection in 2-D arrays, J. Magn. Resonance 42, 150 (1981).Google Scholar
  22. 22.
    R.L. Void and R.R. Void, Separation of single quantum spin echoes by two—dimensional Fourier transform techniques, J. Magn. Resonance 42, 173 (1981).Google Scholar
  23. 23.
    R. Freeman and J. Keeler, Suppression of artifacts in two—dimensional J spectra, J. Magn. Resonance 43, 484 (1981).Google Scholar
  24. 24.
    D.L. Turner, The measurement of coupling constants from two—dimensional NMR spectra, J. Magn. Resonance 39, 391 (1980).Google Scholar
  25. 25.
    A.D. Bain, A superspin analysis of two—dimensional FT NMR experiments, J. Magn. Resonance 39, 335 (1980).Google Scholar
  26. 26.
    A. Bax, R. Freeman, and G.A. Morris, A simple method for suppressing dispersion—mode contributions in NMR spectra: the “pseudo echo”, J. Magn. Resonance 43, 333 (1981).Google Scholar
  27. 27.
    D.L. Turner, Two—dimensional spin-echo spectroscopy of oriented systems, J. Magn. Resonance 46, 213 (1982).Google Scholar
  28. 28.
    W.P. Aue, J. Karhan, and R.R. Ernst, Homonuclear broad band decoupling and two—dimensional J-resolved NMR spectroscopy, J. Chem. Phys. 64, 4226 (1976).CrossRefGoogle Scholar
  29. 29.
    G. Bodenhausen, R. Freeman, G.A. Morris and D.L. Turner, A simple pulse sequence for selective excitation in Fourier transform NMR, J. Magn. Resonance 31, 75 (1978).Google Scholar
  30. 30.
    K. Nagayama, P. Bachmann, K. Wuthrich, and R.R. Ernst, The use of cross—sections and of projections in two—dimensional NMR spectroscopy, J. Magn. Resonance 31, 133 (1978).Google Scholar
  31. 31.
    A. Bax, A.F. Mehlkopf, and J. Smidt, Homonuclear broad band—decoupled absorption spectra, with linewidths which are independent of the transverse relaxation rate, J. Magn. Resonance 35, 167 (1979).Google Scholar
  32. 32.
    K. Nagayama, A. Kumar, K. Wuthrich, and R.R. Ernst, Experimental techniques of two—dimensional correlated spectroscopy, J. Magn. Resonance 40, 321 (1980).Google Scholar
  33. 33.
    M.S. Broido and D.R. Kearns, Proton NMR evidence for an unusual conformation of poly C in solution, J. Magn. Resonance 41, 496 (1980).Google Scholar
  34. 34.
    G. Wider, R. Baumann, K. Nagayama, R.R. Ernst, and K. Wuthrich, Strong spin—spin coupling in the two—dimensional J-resolved 360-MHz proton NMR spectra of the common amino acids, J. Magn. Resonance 42, 73 (1981).Google Scholar
  35. 35.
    K. Nagayama and K. Wuthrich, Systematic application of two—dimensional proton nuclear magnetic resonance techniques for studies of proteins. 1. Combined use of spin—echo correlated spectroscopy and J-resolved spectroscopy for the identification of complete spin systems of non-labile protons in amino acid residues, Eur. J. Biochem. 114, 365 (1981).CrossRefGoogle Scholar
  36. 36.
    G. Wagner, A. Kumar, and K. Wuthrich, Systematic application of two—dimensional proton nuclear magnetic resonance techniques for studies of proteins. 2. Combined use of correlated spectroscopy and nuclear Overhauser spectroscopy for sequential assignments of backbone resonances and elucidation of polypeptide secondary structures, Eur. J. Biochem. 114, 375 (1981).CrossRefGoogle Scholar
  37. 37.
    C. Bosch, A. Kumar, R. Baumann, R.R. Ernst, and K. Wuthrich, 1-D and 2-D NOE in proteins, J. Magn. Resonance 42, 159 (1981).Google Scholar
  38. 38.
    A. Bax, R. Freeman, and G. Morris, Correlation of proton chemical shifts by two—dimensional Fourier transform NMR, J. Magn. Resonance 42, 164 (1981).Google Scholar
  39. 39.
    M. Ohuchi, M. Hosono, K. Matushita, and M. Imanari, A new pulse sequence in two—dimensional FT NMR. Solvent elimination using a Hahn echo, J. Magn. Resonance 43, 499 (1981).Google Scholar
  40. 40.
    A. Kumar, R.R. Ernst, and K. Wuthrich, A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton—proton cross—relaxation networks in biological macromolecules, Biochem. Biophys. Res. Commun. 95, 1 (1980).CrossRefGoogle Scholar
  41. 41.
    A. Kumar, G. Wagner, R.R. Ernst, and K. Wuthrich, Studies of J-connectivities and selective proton—proton Overhauser effects in aqueous solutions of biological macromolecules by two—dimensional NMR experiments, Biochem. Biophys. Res. Commun. 96, 1156 (1980).CrossRefGoogle Scholar
  42. 42.
    J. Jenner, B.H. Meier, P. Bachmann, and R.R. Ernst, 2-D NOE, J. Chem. Phys. 71, 4546 (1979).Google Scholar
  43. 43.
    B.H. Meier and R.R. Ernst, Elucidation of chemical exchange networks by two—dimensional NMR spectroscopy: the heptamethylbenzenonium ion, J. Am. Chem. Soc. 101, 6441 (1979).CrossRefGoogle Scholar
  44. 44.
    S. Macura and R.R. Ernst, Elucidation of cross relaxation in liquids by two—dimensional NMR spectroscopy, Mol. Phys. 41, 95 (1980).CrossRefGoogle Scholar
  45. 45.
    S. Macura, Y. Huang, D. Suter, and R.R. Ernst, Two—dimensional chemical exchange and cross—relaxation spectroscopy of coupled nuclear spins, J. Magn. Resonance 43, 259 (1981).Google Scholar
  46. 46.
    A. Bax and R. Freeman, COSY, COSY-45, F1 decoupling, J. Magn. Resonance 44, 542 (1981).Google Scholar
  47. 47.
    R. Baumann, G. Wider, R.R. Ernst, and K. Wuthrich, Improvement of 2D NOE and 2D correlated spectra by symmetrization, J. Magn. Resonance 44, 402 (1981).Google Scholar
  48. 48.
    G. Bodenhausen and R.R. Ernst, The accordion experiment, a simple approach to three—dimensional NMR spectroscopy, J. Magn. Resonance 45, 367 (1981).Google Scholar
  49. 49.
    R. Baumann, A. Kumar, R.R. Ernst and K. Wuthrich, Improvement of 2D NOE and 2D correlated spectra by triangular multiplication, J. Magn. Resonance 44, 76 (1981).Google Scholar
  50. 50.
    S. Macura, K. Wuthrich, and R.R. Ernst, Separation and suppression of coherent transfer effects in two-dimensional NOE and chemical exchange spectroscopy, J. Magn. Resonance 46, 269 (1982).Google Scholar
  51. 51.
    L. Muller, A. Kumar, and R.R. Ernst, Two—dimensional carbon-13 NMR spectroscopy, J. Chem. Phys. 63, 5490 (1975).CrossRefGoogle Scholar
  52. 52.
    G. Bodenhausen, R. Freeman, and D.L. Turner, Two—dimensional J spectroscopy: Proton—coupled carbon-13 NMR, J. Chem. Phys. 65, 839 (1976).CrossRefGoogle Scholar
  53. 53.
    G. Bodenhausen, R. Freeman, R. Niedermeyer, and D.L. Turner, High—resolution NMR in inhomogeneous magnetic fields, J. Magn. Resonance 24, 291 (1976).Google Scholar
  54. 54.
    R. Freeman, G.A. Morris, and D.L. Turner, Proton—coupled carbon-13 J spectra in the presence of strong coupling, I, J. Magn. Resonance 26, 373 (1977).Google Scholar
  55. 55.
    G. Bodenhausen, R. Freeman, G.A. Morris, and D.L. Turner, Proton—coupled carbon-13 J spectra in the presence of strong coupling, II, J. Magn. Resonance 28, 17 (1977).Google Scholar
  56. 56.
    A.A. Maudsley and R.R. Ernst, Indirect detection of magnetic resonance by heteronuclear two—dimensional spectroscopy, I, Chem. Phys. Lett. 50, 368 (1977).CrossRefGoogle Scholar
  57. 57.
    D.L. Turner and R. Freeman, The proton—coupled carbon-13 spectrum of cholesterol, J. Magn. Resonance 29, 587 (1978).Google Scholar
  58. 58.
    R. Freeman and G.A. Morris, Experimental chemical shift correlation maps in nuclear magnetic resonance spectroscopy, J. Chem. Soc., Chem. Commun., 684 (1978).Google Scholar
  59. 59.
    G. Bodenhausen and R. Freeman, Correlation of chemical shifts of protons and carbon-13, J. Am. Chem. Soc. 100, 320 (1978).CrossRefGoogle Scholar
  60. 60.
    A. Hohener, L. Muller, and R.R. Ernst, 13C 2-D in liquid crystals, Mol. Phys. 38, 909 (1979).CrossRefGoogle Scholar
  61. 61.
    P.H. Bolton and G. Bodenhausen, Heteronuclear two—dimensional NMR as a conformational probe of cellular phosphates, J. Am. Chem. Soc. 101, 1080 (1979).CrossRefGoogle Scholar
  62. 62.
    R. Freeman, S.P. Kempsell, and M.H. Levitt, Elimination of dispersion—mode contributions from two-dimensional NMR spectra, J. Magn. Resonance 34, 663 (1979).Google Scholar
  63. 63.
    L.D. Hall, G.A. Morris, and S. Sukumar, Resolution and assignment of the 270-MHz proton spectrum of cellobiose by homo- and heteronuclear two—dimensional NMR, J. Am. Chem. Soc. 102, 1745 (1980).CrossRefGoogle Scholar
  64. 64.
    G. Bodenhausen, Heteronuclear J spectroscopy, J. Magn. Resonance 39, 175 (1980).Google Scholar
  65. 65.
    L.D. Hall and G.A. Morris, Measurement of carbon-13 proton coupling constants in oligosaccharides by two-dimensional carbon-13 NMR spectroscopy, Carbohyd. Res. 82, 175 (1980).CrossRefGoogle Scholar
  66. 66.
    A.A. Maudsley, L. Muller, and R.R. Ernst, Cross—correlation of spin—decoupled NMR spectra by heteronuclear two—dimensional spectroscopy, J. Magn. Resonance 28, 463 (1977).Google Scholar
  67. 67.
    G. Bodenhausen and R. Freeman, Correlation of proton and carbon-13 NMR spectra by heteronuclear two—dimensional spectroscopy, J. Magn. Resonance 28, 471 (1977).Google Scholar
  68. 68.
    R. Niedermeyer and R. Freeman, Carbon—carbon spin—spin coupling studied by two—dimensional Fourier transformation, J. Magn. Resonance 30, 617 (1978).Google Scholar
  69. 69.
    L. Muller, High—sensitivity in 13C 2-D NMR, J. Magn. Resonance 36, 301 (1979).Google Scholar
  70. 70.
    L. Muller, Off—resonance decoupling in 13C 2-D NMR, J. Magn. Resonance 38, 79 (1980).Google Scholar
  71. 71.
    A.G. Avent and R. Freeman, NMR spin—lattice relaxation studied by magnetization transfer, J. Magn. Resonance 39, 169 (1980).Google Scholar
  72. 72.
    G. Bodenhausen and P.H. Bolton, Elimination of flip—angle effects in two—dimensional NMR spectroscopy. Application to cyclic nucleotides, J. Magn. Resonance 39, 339 (1980).Google Scholar
  73. 73.
    M.H. Levitt and R. Freeman, Simplification of NMR spectra by masking in a second frequency dimension, J. Magn. Resonance 39, 533 (1980).Google Scholar
  74. 74.
    A. Bax and G.A. Morris, An improved method for heteronuclear chemical shift correlation by two—dimensional NMR, J. Magn. Resonance 42, 501 (1981).Google Scholar
  75. 75.
    D.M. Thomas, M.R. Bendall, D.T. Pegg, D.M. Doddrell, and J. Field, Two—dimensional carbon-13-proton polarization transfer J spectroscopy, J. Magn. Resonance 42, 298 (1981).Google Scholar
  76. 76.
    G.A. Morris, Indirect two—dimensional J spectroscopy: measurement of proton multiplet structure via carbon-13 signals, J. Magn. Resonance 44, 277 (1981).Google Scholar
  77. 77.
    P.H. Bolton, Investigation of phospherine and cytidine 5’-phosphate by heteronuclear two—dimensional spectroscopy: samples with strong proton coupling, J. Magn. Resonance 45, 539 (1981).Google Scholar
  78. 78.
    A. Bax and R. Freeman, Relative signs of couplings, 1H-13C 2-D, J. Magn. Resonance 45, 177 (1981).Google Scholar
  79. 79.
    P.H. Bolton and G. Bodenhausen, Resolution enhancement, coherence transfer echoes. J. Magn. Resonance 46, 306 (1982).Google Scholar
  80. 80.
    M.R. Bendall, D.T. Pegg, D.M. Doddrell, and D.M. Thomas, A superior pulse sequence for two—dimensional chemical shift correlation spectroscopy, J. Magn. Resonance 46, 43 (1982).Google Scholar
  81. 81.
    P.H. Bolton and G. Bodenhausen, Double resonance in heteronuclear two—dimensional spectroscopy, J. Magn. Resonance 43, 339 (1981).Google Scholar
  82. 82.
    S. Vega and A. Pines, Operator formalism for double quantum NMR, J. Chem. Phys. 66, 5624 (1977).CrossRefGoogle Scholar
  83. 83.
    A. Wokaun and R.R. Ernst, Selective detection of multiple quantum transitions in NMR by two—dimensional spectroscopy, Phys. Lett. 52, 407 (1977).Google Scholar
  84. 84.
    L. Muller, Detection of weak nuclei via MQ coherence, J. Am. Chem. Soc. 101, 4481 (1979).CrossRefGoogle Scholar
  85. 85.
    A. Bax, R. Freeman, and S.P. Kempsell, Natural abundance carbon-13-carbon- 13 coupling observed via double—quantum coherence, J. Am. Chem. Soc. 102, 4849 (1980).CrossRefGoogle Scholar
  86. 86.
    G. Bodenhausen, R.L. Void, and R. R. Void, Multiple quantum spin—echo spectroscopy, J. Magn. Resonance 37, 93 (1980).Google Scholar
  87. 87.
    A. Minoretti, W.P. Aue, M. Reinhold, and R.R. Ernst, Coherence transfer by radiofrequency pulses for heteronuclear detection of multiple quantum transitions, J. Magn. Resonance 40, 175 (1980).Google Scholar
  88. 88.
    A. Bax, S.P. Kempsell, and R. Freeman, Investigation of carbon-13-carbon-13 long range couplings in natural abundance samples, J. Magn. Resonance 41, 349 (1980).Google Scholar
  89. 89.
    A. Bax and R. Freeman, Investigation of carbon-13-carbon-13 couplings in natural abundance samples: the strong coupling case, J. Magn. Resonance 41, 507 (1980).Google Scholar
  90. 90.
    O.W. Sorensen, R. Freeman, T.A. Frenkiel, T.H. Mareci, and R. Schuck, Observation of carbon-13-cdrbon-13 coupling with enhanced sensitivity, J. Magn. Resonance 46, 180 (1982).Google Scholar
  91. 91.
    W. Ammann, R. Richarz, T. Wirthlin, and D. Wendisch, Proton and carbon-13 chemical shifts and coupling constants of lupane. Application of two—dimensional NMR techniques, Org. Magn. Resonance 20 (4), 260 (1982).CrossRefGoogle Scholar
  92. 92.
    G.A. Gray, Multinuclear two—dimensional NMR: Assignments of natural abundance polypeptide 13C, lH and 15N chemical shifts and demonstration of isomer interconversion, Org. Magn. Resonance 21 (2), 111 (1983).CrossRefGoogle Scholar
  93. 93.
    R. Richarz and W. Ammann, Practical Tips for Homonuclear 2D-NMR Experiments, Varian Application Note No. Z-81, July 1981.Google Scholar
  94. 94.
    2D NMR of Rotenone, Jeol Application Note No. NM 16 (1984).Google Scholar
  95. 95.
    R. Richarz, W. Ammann, and T. Wirthlin, XL-200/300 in DEPT (h): A New Experiment for the ADEPT Spectroscopist, Varían Application Note No. Z-15, Aug. 1982.Google Scholar
  96. 96.
    W. Ammann, R. Richarz and T. Wirthlin, COSMIC: A New Approach to Automatic Structure Elucidation. A Pascal Programme for the XL-200 Data System, Varían Application Note No. Z-12, April 1981.Google Scholar
  97. 97.
    A. Bax, R. Freeman, T.A. Frenkiel and M.H. Levitt, Assignment of carbon-13 NMR spectra via double quantum coherence, J. Magn. Resonance 43, 478 (1981).Google Scholar
  98. 98.
    G. Bodenhausen, R. Freeman, R. Niedermeyer, and D.L. Turner, Double Fourier transformation in high resolution NMR, J. Magn. Resonance 26, 133 (1977).Google Scholar
  99. 99.
    R. Freeman and G.A. Morris, Two—dimensional Fourier transformation in NMR, Bull. Magn. Resonance 1 (1), 5 (1979).Google Scholar
  100. 100.
    D.H. Williams, M.P. Williamson, D.W. Butcher, and S.J. Hammond, Detailed binding sites of the antibiotics vancomycin and ristocetin A: Determination of intermolecular distances in antibiotic/substrate complexes by use of the time—dependent NOE, J. Am. Chem. Soc. 105, 1332 (1983).CrossRefGoogle Scholar
  101. 101.
    D. Wenhaus, R.N. Sheppard, and I.R.C. Bick, Structural and conformational study of repanduline using long-range nuclear Overhauser effect difference spectroscopy, J. Am. Chem. Soc. 105, 5996 (1983).CrossRefGoogle Scholar
  102. 102.
    J.C. Steffens, J.L. Roark, D.G. Lynn, and J.R. Riopel, Host recognition in parasitic angiosperms: Use of correlation spectroscopy to identify long—range coupling in an haustorial inducer, J. Am. Chem. Soc. 105, 1669 (1983).CrossRefGoogle Scholar
  103. 103.
    A.C. Pinto, M.L.A. Goncalves, R.B. Filho, A. Neszmelyi, and G. Lukacs, Natural abundance 13C-13C coupling constants observed via double quantum coherence: Structural elucidation of velloziolide, a diterpene with a novel skeleton, J. Chem. Soc., Chem. Commun., 293 (1982).Google Scholar
  104. 104.
    A. Bax, Two Dimensional Nuclear Magnetic Resonance in Liquids, Delft University Press, Delft, Holland (1982).Google Scholar
  105. 105.
    D.A. Aikens, S.C. Bunce, O.F. Onasch, H.M. Schwartz, and C. Hurwitz, Two dimensional NMR investigation of the protonation sequence in spermidine, J. Chem. Soc., Chem. Commun., 43 (1983).Google Scholar
  106. 106.
    E. Haslinger and H. Kalchhauser, 2D-NMR of natural products, Part III, Homo- and heteronuclear NMR-spectroscopy of a cyclic tetrapeptide related to chlamydocin, Tetrahedron Lett. 24 (25), 2553 (1983).CrossRefGoogle Scholar
  107. 107.
    M.L. Martin, G.J. Martin, and J.J. Delpuech, Practical NMR Spectroscopy, Heyden and Sons Ltd., London (1980).Google Scholar
  108. 108.
    Two—dimensional NMR, Bruker Application Note, April 1982.Google Scholar
  109. 109.
    D.L. Foxall, New Water Suppression Experiments, Varian Application Note No. NMR-23, January 1984.Google Scholar
  110. 110.
    R. Richarz and T. Wirthlin, CCCP: Carbon—carbon Connectivity Plots on the XL-200, Varian Application Note No. 2 - 13, April 1983.Google Scholar
  111. 111.
    C. LeCocq and J.-Y. Lallemand, Precise carbon-13 NMR multiplicity determination, J. Chem. Soc., Chem. Commun., 150 (1981).Google Scholar
  112. 112.
    A.C. Pinto, S.K. Do Prado, R.B. Filho, W.E. Hull, A. Neszmelyi, and G. Lukacs, Natural abundance 13C-13C coupling constants observed via double quantum coherence. Structural elucidation by the one—and the two—dimensional NMR experiments of velloziolone, a new seco—diterpene, Tetrahedron Lett. 23 (50), 5267 (1982).CrossRefGoogle Scholar
  113. 113.
    E.L. Ulrich, W.M. Westler, and J.L. Markley, Reassignments in the 1H-NMR spectrum of flavin adenine dinucteolide by two—dimensional homonuclear chemical shift correlation, Tetrahedron Lett. 24 (5), 473 (1983).CrossRefGoogle Scholar
  114. 114.
    C.J. Turner, INEPT on the XL-200, Varían Application Note No. Z-ll, September 1980.Google Scholar
  115. 115.
    R. Richarz, W. Ammann, and T. Wirthlin, Relayed Coherence Transfer in 2D- NMR, Varían Application Note No. Z-17, September 1982.Google Scholar
  116. 116.
    A. Bax, Broadband homonuclear decoupling in heteronuclear shift correlation NMR spectroscopy, J. Magn. Resonance 53, 517 (1983).Google Scholar
  117. 117.
    M.L. Levitt, G. Bodenhausen, and R.R. Ernst, The illusions of spin decoupling, J. Magn. Resonance 53, 443 (1983).Google Scholar
  118. 118.
    G. Lukacs and A. Neszmelyi, Computer-assisted determination of carbon connectivity patterns based on natural abundance one—bond 13C-13C coupling constants: Terpenes, Tetrahedron Lett. 22 (50), 5053 (1981).CrossRefGoogle Scholar
  119. 119.
    D.J. Cookson and B.E. Smith, Improved method for assignment of multiplicity in 13C-NMR spectroscopy with application to the analysis of mixtures, Org. Magn. Resonance 16 (2), 111 (1981).CrossRefGoogle Scholar
  120. 120.
    M.R. Bendall and D.T. Pegg, 1H-13C two-dimensional chemical shift correlation spectroscopy using DEPT, J. Magn. Resonance 53, 144 (1983).Google Scholar
  121. 121.
    G. King and P.E. Wright, Application of two—dimensional relayed coherence transfer experiments to 1H-NMR studies of macromolecules, J. Magn. Resonance 54, 328 (1983).Google Scholar
  122. 122.
    J.N. Shoolery, Recent developments in 13C- and proton-NMR, J. Nat. Prod. 47 (2), 226 (1984).CrossRefGoogle Scholar
  123. 123.
    H. Kessler and D. Ziessow, Zweidimensional NMR-spektroskopie, Nachr. Chem. Tech. Lab. 30 (6), 448 (1982).Google Scholar
  124. 124.
    D.L. Foxall, Broadband Decoupled Heteronuclear Correlation and Semiselective Heteronuclear 2D J Spectroscopy, Varian Application Note, 1984.Google Scholar
  125. 125.
    A. Bax, Two-dimensional heteronuclear relayed coherence transfer spectroscopy, J. Magn. Resonance 53, 149 (1983).Google Scholar
  126. 126.
    R. Benn and H. Günther, Modern pulse methods in high-resolution NMR spectroscopy, Angew. Chem., Int. Ed. Engl. 22, 350 (1983).CrossRefGoogle Scholar
  127. 127.
    J.M. Bulsing, W.M. Brooks, J. Field, and D.M. Doddrell, Polarisation transfer via an intermediate multiple quantum state of maximum order, J. Magn. Resonance 56, 167 (1984).Google Scholar
  128. 128.
    M.J. Gidley and S.M. Bociek, Selective 2D-heteronuclear J-resolved NMR spectroscopy, J. Chem. Soc., Chem. Commun., 220 (1985).Google Scholar
  129. 129.
    J.A. Wilde and P.H. Bolton, Suppression of homonuclear couplings in heteronuclear two—dimensional spectroscopy, J. Magn. Resonance 59, 343 (1984).Google Scholar
  130. 130.
    T.T. Nakashima, B.K. John, and R.E.D. McClung, Selective 2D DEPT heteronuclear shift correlation spectroscopy, J. Magn. Resonance 59, 124 (1984) and references therein.Google Scholar
  131. 131.
    H. Kessler, C. Griesinger, J. Zarbock, and H.R. Looslie, Assignment of carbonyl carbons and sequence analysis in peptides by heteronuclear shift correlation via small coupling constants with broad-band decoupling in t 1(COLOC), J. Magn. Resonance 57, 331 (1984).Google Scholar
  132. 132.
    L. Muller, Mapping of spin—spin coupling via zero—quantum coherence, J. Magn. Resonance 59, 326 (1984).Google Scholar
  133. 133.
    P.J. Hore, Two—dimensional chemical shift correlation using water suppression pulses, J. Magn. Resonance 56, 535 (1984) and references therein.Google Scholar
  134. 134.
    C. Yu and G.C. Levy, J. Am. Chem. Soc. 106,6533 (1984) and references therein.CrossRefGoogle Scholar
  135. 135.
    G. Wagner, Two dimensional relayed coherence transfer-NOE spectroscopy, J. Magn. Resonance 57, 497 (1984)Google Scholar
  136. 136.
    C.A.G. Haasnoot, F.J.M. van de Ven, and C.W. Hilbers, COCONOSY, com-bination of 2D correlated and 2D nuclear Overhauser enhancement spectroscopy in a single experiment, J. Magn. Resonance 56, 343 (1984).Google Scholar
  137. 137.
    M.A. Delsuc, E. Guittet, N. Trotin, and J.Y. Lallemand, Two dimensional correlation spectroscopy with heteronuclear relay, J. Magn. Resonance 56, 163 (1984).Google Scholar
  138. 138.
    M. Ikura and K. Hikichi, Two dimensional double quantum coherence echo correlated spectroscopy (DECSY), J. Am. Chem. Soc. 106, 4275 (1984) and references therein.CrossRefGoogle Scholar
  139. 139.
    S. Macura, N.G. Kumar, and L.R. Brown, Homonuclear relayed double quantum 2D NMR spectroscopy, J. Magn. Resonance 60, 99 (1984).Google Scholar
  140. 140.
    D. Neuhaus, G. Wider, G. Wagner, and K. Wuthrich, X-Relayed lH-lH correlated spectroscopy, J. Magn. Resonance 57, 164 (1984) and references therein.Google Scholar
  141. 141.
    E. Breitmaier, Die Kohlenstoff-13-NMR Spektroskopie, Pharmazie in unserer Zeit 13 (4), 102 (1984).CrossRefGoogle Scholar
  142. 142.
    H. Günther and P. Schmitt, Zweidimensionale Messtechniken der Hochauflosenden Kernresonanzspektroskopie (Teil I): J, δ Spektren, Kontakte (2), 3 (1985).Google Scholar
  143. 143.
    H. Kessler, A. Muller, and H. Oschkinat, Differences and sums of traces within COSY spectra (DISCO) for the extraction of coupling constants: decoupling after the measurement, Magn. Resonance in Chemistry, 23 (10), 844 (1985).CrossRefGoogle Scholar
  144. 144.
    H. Kessler, W. Bermel, and C. Griesinger, Recognition of NMR proton spin systems of cyclosporin A via heteronuclear proton—carbon long range couplings, J. Am. Chem. Soc., 107, 1083 (1985).CrossRefGoogle Scholar
  145. 145.
    H. Kessler, W. Bermel, and C. Griesinger, Determination of carbon—carbon connectivities, assignments of quaternary carbon atoms, and extraction of carbon—carbon coupling constants by carbon relayed hydrogen—carbon spectroscopy, J. Magn. Resonance, 62, 573 (1985).Google Scholar
  146. 146.
    M.J. Gidley and S.M. Bociek, Long-range 13C-1H coupling in carbohydrates by selective 2D heteronuclear J-resolved NMR spectroscopy, J. Chem. Soc., Chem. Commun., 220(1985).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • Atta-ur-Rahman
    • 1
  1. 1.H.E.J. Research Institute of ChemistryUniversity of KarachiKarachiPakistan

Personalised recommendations