Advertisement

Self-Organization of Ribosomal RNA

  • V. D. Vasiliev
  • I. N. Serdyuk
  • A. T. Gudkov
  • A. S. Spirin
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

RNA, like protein, is capable of forming compact tertiary structures. Transfer RNA has become the first known example of unique tertiary structures of the polyribonucleotides. High molecular weight RNAs have been less studied in this respect, but their ability to acquire compact conformations at sufficient ionic strength and especially in the presence of Mg2+ and polyamines suggested long ago their specific folding into tertiary structures (Spirin, 1963). Electron microscopy study of the isolated ribosomal RNAs in compact conformation has demonstrated their unique shape (Vasiliev et al., 1978; Vasiliev and Zalite, 1980). Determinations of ribosomal RNA primary structures have allowed to predict and to give an experimental proof of the main patterns of their secondary structures, which are formed by complementary base-pairing of polynucleotide chain sections; long-range base-paired interactions indicated the formation of a unique domain structure of the ribosomal RNA (reviewed by Brimacombe et al., 1983). The self-organization of secondary and tertiary structure of the ribosomal RNAs seems to be a prerequisite and a conformational basis for the assembly and the function of the ribosome.

Keywords

Ribosomal Protein Ribosomal Subunit Sedimentation Coefficient Compact State Compact Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azad, A.A. (1979). Intermodular base-paired interaction between complementary sequences present near the 3′ ends of 5S RNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits. Nucl. Acids Res 7: 1913–1929.PubMedCrossRefGoogle Scholar
  2. Beaudry, P., Petersen, H.U., Grunberg-Manago, M., Jacrot, B. (1976). A neutron study of the 30S-ribosome subunit and of the 30S-IF-3 complex. Biochem. Biophys. Res. Communs 72: 391–397.CrossRefGoogle Scholar
  3. Bogdanov, A.A., Kopylov, A.M., Shatsky, I.N. (1980). The role of ribonucleic acids in the organization and functioning of ribosomes of E. coli. In: Subcellular biochemistry, vol. 7, ed. Roodyn, D.B. Plenum Press, New York/London, pp. 81–116.Google Scholar
  4. Boublik, M., Spiess, E., Roth, H.E., Hellmann, W., Jenkins, F. (1978). Structure of LiCl core particles of 50S ribosomal subunits from E. coli by electron microscopy. Cytobiologie 18: 309–319.Google Scholar
  5. Brimacombe, R., Maly, P., Zwieb, C. (1983). The structure of ribosomal RNA and its organization relative to ribosomal protein. Prog. Nucl. Acid. Res. Mol. Biol 28: 1–49.CrossRefGoogle Scholar
  6. Dabbs, E.M., Ehrlich, R., Schroeter, B.H., Stöffler-Meilicke, M., Stöffler, G. (1981). Mutants of Escherichia coli lacking ribosomal protein LI. J. Mol. Biol. 149: 553–578.Google Scholar
  7. Folkhard, W., Pilz, I., Kratky, O., Garrett, R., Stöffler, G. (1975). Small-angle X-ray studies on the structure of 16S ribosomal RNA and of a complex of ribosomal protein S4 and 16S ribosomal RNA from Escherichia coli. Eur. J. Biochem 59: 63–71.PubMedCrossRefGoogle Scholar
  8. Kisselev, N.A., Gavrilova, L.P., Spirin, A.S. (1961). On configuration of high-polymer ribonucleic acid macromolecules as revealed by electron microscopy. J. Mol. Biol 3: 778–783.PubMedCrossRefGoogle Scholar
  9. Liljas, A. (1982). Structural studies of ribosomes. Prog. Biophys. Mol. Biol 40: 161–228.PubMedCrossRefGoogle Scholar
  10. Nisbet, J.H., Slayter, H.S. (1975). Configurational changes in ribosomal RNA as a function of ionic conditions. Biochemistry 14: 4003–4010.CrossRefGoogle Scholar
  11. Serdyuk, I.N., Agalarov, S.C., Gongadze, G.M., Gudkov, A.T., Sedelnikova, S.E., May, R., Spirin, A.S. (1984). On the shape and compactness of ribosomal RNAs and their complexes with proteins in solution. Molekul. Biol 18: 244–260.Google Scholar
  12. Serdyuk, I.N., Agalarov, S.C, Sedelnikova, S.E., Spirin, A.S., May, R. (1983). Shape and compactness of the isolated ribosomal 16S RNA and its complexes with ribosomal proteins. J. Mol. Biol 169: 409–425.PubMedCrossRefGoogle Scholar
  13. Serdyuk, I.N., Grenader, A.K., Koteliansky, V.E. (1977). Study of 30-S ribosomal subparticle protein-deficient ribonucleoprotein derivatives by X-ray diffusion scattering. Eur. J. Biochem 79: 505–510.PubMedCrossRefGoogle Scholar
  14. Shatsky, I.N., Evstafieva, A.G., Bystrova, T.F., Bogdanov, A.A., Vasiliev, V.D. (1980). Topography of RNA in the ribosome: location of the 3′-end of 5S RNA on the central protuberance of the 50S subunit. FEBS Lett. 121: 97–100.PubMedCrossRefGoogle Scholar
  15. Spirin, A.S. (1963). Some problems concerning the macromolecular structure of ribonucleic acids. Prog. Nucl. Acids Res 1: 301–345.CrossRefGoogle Scholar
  16. Stanley, W.M., Bock, R.M. (1965). Isolation and physical properties of the ribosomal ribonucleic acid of E. coli. Biochemistry 4: 1302–1311.Google Scholar
  17. Strycharz, W.A., Nomura, M., Lake, J.A. (1978). Ribosomal proteins L7/L12 localized at a single region of the large subunit by immune electron microscopy. J. Mol. Biol 126: 123–140.PubMedCrossRefGoogle Scholar
  18. Vasiliev, V.D. (1974). Morphology of the ribosomal 30S subparticle according to electron microscopy data. Acta Biol. Med. Germ 33: 779–793.PubMedGoogle Scholar
  19. Vasiliev, V.D., Koteliansky, V.E. (1977). The 30S ribosomal subparticle retains its main morphological features after removal of half the proteins. FEBS Lett. 76: 125–128.PubMedCrossRefGoogle Scholar
  20. Vasiliev, V.D., Koteliansky, V.E. (1979). Freeze-drying and high-resolution shadowing in electron microscopy of Escherichia coli ribosomes. Methods Enzymol. 59: 612–629.PubMedCrossRefGoogle Scholar
  21. Vasiliev, V.D., Koteliansky, V.E., Rezapkin, G.V. (1977a). The complex of 16S RNA with proteins S4, S7, S8, SI5, retains the main morphological features of the 30S ribosomal subparticle. FEBS Lett. 79: 170–174.PubMedCrossRefGoogle Scholar
  22. Vasiliev, V.D., Koteliansky, V.E., Shatsky, I.N., Rezapkin, G.V. (1977b). Structure of the ribosomal 16S RNA-protein S4 complex as revealed by electron microscopy. FEBS Lett. 84: 43–47.PubMedCrossRefGoogle Scholar
  23. Vasiliev, V.D., Selivanova, O.M., Koteliansky, V.E. (1978). Specific selfpacking of the ribosomal 16S RNA. FEBS Lett. 95: 273–276.PubMedCrossRefGoogle Scholar
  24. Vasiliev, V.D., Selivanova, O.M., Ryazantsev, S.N. (1983). Structure of the Escherichia coli 50S ribosomal subunit. J. Mol. Biol 171: 561–569.PubMedCrossRefGoogle Scholar
  25. Vasiliev, V.D., Zalite, O.M. (1980). Specific compact self-packing of the ribosomal 23S RNA. FEBS Lett. 121: 101–104.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • V. D. Vasiliev
  • I. N. Serdyuk
  • A. T. Gudkov
  • A. S. Spirin

There are no affiliations available

Personalised recommendations