Skip to main content

Site-Directed Mutagenesis of Escherichia coli Ribosomal RNA

  • Chapter
Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

Considerable progress has been made in the last few years in the development of techniques to produce and analyze mutations in Escherichia coli ribosomal RNA. It is now possible to introduce mutations into any site in the 16S, 23S, and 5S rRNAs, and a number of techniques are available to analyze structural and functional effects of these mutations. The development of this genetic system comes at a time when rapid progress has also occurred in the biochemical and comparative phylogenetic studies of rRNA. We now know a great deal about the structure of the rRNAs and have some evidence for functionally important sites as well. The introduction of site-directed mutagenic techniques promises to be particularly useful in further defining the structure and function of these and other specific regions of rRNA. In this chapter I will describe the contributions from our laboratory (and our collaborators) to the area of site-directed mutagenesis of rRNA. It represents the considerable effort of a number of very fine co-workers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brosius, J., Dull, T.J., Sleeter, D.D., Noller, H.F. (1981a). Gene organization and primary structure of a ribosomal RNA operon from E. coli. J. Mol. Biol. 148: 107–127.

    CAS  Google Scholar 

  • Brosius, J., Ullrich, A., Raker, M.A., Gray, A., Dull, T.J., Gutell, R.R., Noller, H.F. (1981b). Construction and fine mapping of recombinant plasmids containing the rrnB ribosomal RNA operon of E. coli. Plasmid 6: 112–118.

    Article  CAS  Google Scholar 

  • Dahlberg, A. (1982). Electrophoresis of ribosomes and polysomes. In: Gel electrophoresis of nucleic acids: a practical approach, eds. Rickwood, D., Hames, B.D. IRL Press Ltd., Oxford, pp. 213–225.

    Google Scholar 

  • Dahlberg, J.E., Kintner, C., Lund, E. (1978). Specific binding of tRNAfmet to 23S rRNA of E. coli. Proc. Natl. Acad. Sei. USA 75: 1071–1075.

    Article  CAS  Google Scholar 

  • Delihas, N., Dunn, J.J., Erdmann, V.A. (1975). The reaction of 5S RNA in 70S ribosomes with kethoxal. FEBS Lett 58: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Glotz, C., Zwieb, C., Brimacombe, R., Edwards, D., Kossel, H. (1981). Secondary structure of the large subunit ribosomal RNA from E. coli, Zea mays chloroplasts, and human and mouse mitochondrial ribosomes. Nucl. Acids Res. 9: 3287–3306.

    CAS  Google Scholar 

  • Göringer, H.U., Bertram, S., Wagner, R. (1984a). The effect of tRNA binding on the structure of 5S RNA in E. coli. J. Biol. Chem. 259: 491–496.

    Google Scholar 

  • Göringer, H., Wagner, R., Jacob, W., Dahlberg, A., Zwieb, C. (1984b). Oligonucleotide directed mutagenesis of Escherichia coli 5S ribosomal RNA: construction of mutant and structural analysis. Nucl. Acids Res 18: 6935–6950.

    Article  Google Scholar 

  • Gourse, R., Stark, M., Dahlberg, A. (1982). Site-directed mutagenesis of ribosomal RNA: construction and characterization of deletion mutants. J. Mol. Biol. 159: 397–416.

    Article  PubMed  CAS  Google Scholar 

  • Gourse, R., Takebe, Y., Sharrock, R., Nomura, M. (1985). Feedback regulation of rRNA and tRNA synthesis and accumulation of free ribosomes after conditional expression of rRNA genes. Proc. Natl. Acad. Sei. USA 82: 1069–1073.

    Article  CAS  Google Scholar 

  • Gregory, R., Zeller, M., Thurlow, D., Gourse, R., Stark, M., Dahlberg, A., Zimmermann, R. (1984). Interaction of ribosomal proteins S6, S8, SI5 and SI8 with the central domain of 16S ribosomal RNA from Escherichia coli. J. Mol. Biol. 178: 287–302.

    Article  PubMed  CAS  Google Scholar 

  • Kurland, C. (1980). On the accuracy of elongation. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., etal. University Park Press, Baltimore, pp. 597–614.

    Google Scholar 

  • Messing, J., Gronenborn, B., Müller-Hill, B., Hofschneider, P.H. (1977). Filamentous coliphage M13 as a cloning vehicle: insertion of a Hindll fragment of the lac regulatory region. Proc. Natl. Acad. Sei. USA 74: 3642–3646.

    Article  CAS  Google Scholar 

  • Noller, H.F., Garrett, R.A. (1979). Structure of 5S ribosomal RNA from E. coli: identification of kethoxal-reactive sites in the A and B conformations. J. Mol. Biol. 132: 621–636.

    CAS  Google Scholar 

  • Oostra, B.A., Van Vliet, A.J., Ab, G., Gruber, M. (1981). Enhancement of ribosomal ribonucleic acid synthesis by DNA gyrase activity in E. coli. J. Bacteriol. 148: 782–787.

    CAS  Google Scholar 

  • Pedersen, S. (1984). In Escherichia coli individual genes are translated with different rates in vivo. Alfred Benzon Symposium, Copenhagen, Denmark, pp. 467–473.

    Google Scholar 

  • Petrullo, L.A., Gallagher, P.J., Elseviers, D. (1983). The role of 2-methylthio-N6-isopentenyladenosine in read through and suppression of nonsense codons in E. coli. Mol. Gen. Genet. 190: 289–294.

    Article  CAS  Google Scholar 

  • Sancar, A., Hack, A.M., Rupp, W.D. (1979). Simple method for identification of plasmid-coded proteins. J. Bacteriol. 137: 692–693.

    PubMed  CAS  Google Scholar 

  • Shine, J., Dalgarno, L. (1974). The 3′-terminal sequence of E. coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sei. USA 71: 1342–1346.

    CAS  Google Scholar 

  • Stark, M., Gourse, R., Dahlberg, A. (1982). Site-directed mutagenesis of ribosomal RNA: analysis of ribosomal RNA deletion mutants using maxicells. J. Mol. Biol. 159: 417–439.

    Article  PubMed  CAS  Google Scholar 

  • Stark, M., Gregory, R., Gourse, R., Thurlow, D., Zwieb, C., Zimmermann, R., Dahlberg, A. (1984). Effects of site-directed mutations in the central domain of 16S ribosomal RNA upon ribosomal protein binding, RNA processing and 30S subunit assembly. J. Mol. Biol 178: 303–322.

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe, J.G. (1978). Complete nucleotide sequence of the E. coli plasmid pBR322. Cold Spring Harbor Symp. Quant. Biol. 43: 77–90.

    Google Scholar 

  • Thompson, J., Schmidt, F., Cundliffe, E. (1982). Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J. Biol. Chem. 257: 7915–7917.

    PubMed  CAS  Google Scholar 

  • Yang, H.L., Heller, K., Geliert, M., Zubay, G. (1979). Differential sensitivity of gene expression in vitro to inhibitors of DNA gyrase. Proc. Nat. Acad. Sei. USA 76: 3304–3308.

    Article  CAS  Google Scholar 

  • Yarus, M., Thompson, R.C. (1983). Precision of protein synthesis. In: Gene function in prokaryotes, eds. Beckwith, J., etal. Cold Spring Harbor Laboratory, New York, pp. 23–63.

    Google Scholar 

  • Zagorska, L., Van Duin, J., Noller, H.F., Pace, B., Johnson, K.D., Pace, R.N. (1984). The conserved 5S rRNA complement to tRNA is not required for translation of natural mRNA. J. Biol. Chem. 259: 2798–2802.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R.A., Mackie, G.A., Muto, A., Garrett, R.A., Ungewickell, E., Ehresmann, C., Stiegler, P., Ebel, J.P., Fellner, P. (1975). Location and characteristics of ribosomal protein binding sites in the 16S rRNA of E. coli. Nucl. Acids Res. 2: 279–302.

    Article  CAS  Google Scholar 

  • Zwieb, C., Dahlberg, A. (1984a). Point mutations in the middle of 16S ribosomal RNA of E. coli produced by deletion loop mutagenesis. Nucl. Acids Res. 12: 4361–4375.

    CAS  Google Scholar 

  • Zwieb, C., Dahlberg, A. (1984b). Structural and functional analysis of Escherichia coli ribosomes containing small deletions around position 1760 in the 23S ribosomal RNA. Nucl. Acids Res. 12: 7135–7152.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Dahlberg, A.E. (1986). Site-Directed Mutagenesis of Escherichia coli Ribosomal RNA. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_40

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics