Advertisement

Stereochemical Analysis of Ribosomal Transpeptidation, Translocation, and Nascent Peptide Folding

  • A. S. Spirin
  • V. I. Lim
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

Ribosomal translation includes three main reactions: codon-dependent binding of aminoacyl-tRNA, transpeptidation, and translocation (Fig. 32.1). Cotranslational folding of a nascent peptide also takes place on the ribosome. None of these processes have been studied on the detailed molecular level in terms of molecular kinematics and concrete atomic interactions. At the same time, the atomic structure of tRNA, the principles of tRNA-codon interactions, the chemistry of transpeptidation reactions, and certain restrictions imposed by the ribosome are known. Using this knowledge and accepting some reasonable postulates, the ribosomal processes can be studied by means of molecular models. Some results of the stereochemical modeling experiments are briefly given below.

Keywords

Torsion Angle Peptide Group Acceptor Substrate Tetrahedral Intermediate Peptidyltransferase Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blobel, G., Sabatini, D.D. (1970). Controlled proteolysis of nascent polypeptides in rat liver cell fractions. I. Location of the polypeptides within ribosomes. J. Cell Biol. 45: 130–145.PubMedCrossRefGoogle Scholar
  2. Blundell, T., Barlow, D., Borkakoti, N., Thorntorn, J. (1983). Solvent-induced distortions and the curvature of α-helices. Nature 306: 281–283.PubMedCrossRefGoogle Scholar
  3. Deslongchamps, P. (1975). Stereoelectronic control in the cleavage of tetrahedral intermediates in the hydrolysis of esters and amides. Tetrahedron 31: 2463–2490.CrossRefGoogle Scholar
  4. Fuller, W., Hodgson, A. (1967). Conformation of the anticodon loop in tRNA. Nature 215: 817–821.PubMedCrossRefGoogle Scholar
  5. Grosjean, H., Soli, D.G., Crothers, D.M. (1976). Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. J. Mol. Biol. 103: 499–519PubMedCrossRefGoogle Scholar
  6. Johnson, A.E., Adkins, H.J., Matthews, E.A., Cantor, C.R. (1982). Distance moved by transfer RNA during translocation from the A site to the P site on the ribosome. J. Mol. Biol. 156: 113–140.PubMedCrossRefGoogle Scholar
  7. Kabsch, W., Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22: 2577–2637.PubMedCrossRefGoogle Scholar
  8. Kim, S.H., Suddath, F.L., Quigley, G.J., McPherson, A., Sussman, J.L., Wang, A.H.J., Seeman, N.C., Rich, A. (1974). Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185: 435–440.PubMedCrossRefGoogle Scholar
  9. Klausner, R.D., Kempf, C., Weinstein, J.N., Blumenthal, R., Van Renswoude, J. (1983). The folding of ovalbumin. Renaturation in vitro versus biosynthesis in vitro. Biochem. J. 212: 801–810.PubMedGoogle Scholar
  10. Lim, V.I. (1975). Structural rearrangements of protein chain during native globule formation. The hypothesis of “excessive” helices. Dokl. Akad. Nauk SSSR 222: 1467–1469.PubMedGoogle Scholar
  11. Lim, V.I. (1978). Polypeptide chain folding through a highly helical intermediate as a general principle of globular protein structure formation. FEBS Lett. 89: 10–14.PubMedCrossRefGoogle Scholar
  12. Malkin, L.I., Rich, A. (1967). Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. J. Mol. Biol. 26: 329–346.PubMedCrossRefGoogle Scholar
  13. Moras, D., Comarmond, M.B., Fischer, J., Weiss, R., Thierry, J.C., Ebel, J.P., Giege, R. (1980). Crystal structure of yeast tRNAasp. Nature 288: 669–674.PubMedCrossRefGoogle Scholar
  14. Paulsen, H., Robertson, J.M., Wintermeyer, W. (1983). Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measure-ments between A and P site-bound tRNAphe. J. Mol. Biol. 167: 411–426.PubMedCrossRefGoogle Scholar
  15. Phillips, D.C. (1967). The hen egg-white lysozyme molecule. Proc. Natl. Acad. Sci. USA 57: 484–495.CrossRefGoogle Scholar
  16. Ramachandran, G.N., Sasisekharan, V. (1968). Conformation of polypeptides and proteins. Adv. Protein Chem. 23: 283–37.PubMedCrossRefGoogle Scholar
  17. Rich, A. (1974). How transfer RNA may move inside the ribosome. In: Ribosomes, eds. Nomura, M., et al. Cold Spring Harbor Laboratory, New York, pp. 871–884.Google Scholar
  18. Robertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B.F.C., Klug, A. (1974). Structure of yeast phenylalanine tRNA at 3 A resolution. Nature 250: 546–551.PubMedCrossRefGoogle Scholar
  19. Smith, W.P., Tai, P.-C., Davis, B.D. (1978). Interaction of secreted nascent chains with surrounding membrane in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 75: 5922–5925.PubMedCrossRefGoogle Scholar
  20. Sundaralingam, M., Brennan, T., Yathindra, N., Ichikawa, T. (1975). Stereochemistry of messenger RNA (codon) — transfer RNA (anticodon) interaction on the ribosome during peptide bond formation. In: Structure and conformation of nucleic acids and protein — nucleic acid interactions, eds. Sundaralingam, M., Rao, S.T. University Park Press, Baltimore, pp. 101–115.Google Scholar
  21. Sussman, J.L., Holbrook, S.R., Warrant, R.W., Church, G.M., Kim, S.H. (1978). Crystal structure of yeast phenylalanine tranfer RNA. J. Mol. Biol. 123: 607–630.PubMedCrossRefGoogle Scholar
  22. Woo, N.H., Roe, B.A., Rich, A. (1980). Three-dimensional structure of Escherichia coli initiator tRNAmetf. Nature 286: 346–351.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • A. S. Spirin
  • V. I. Lim

There are no affiliations available

Personalised recommendations