Advertisement

Structural and Functional Aspects of the N6,N6 Dimethyladenosines in 16S Ribosomal RNA

  • P. H. van Knippenberg
Part of the Springer Series in Molecular Biology book series (SSMOL)

Abstract

The methylated nucleotides in 16S ribosomal RNA of Escherichia coli occur in highly conserved sequences that are readily accessible to solvent in 30S subunits but are shielded in translating ribosomes (for a review see Noller, 1984). Regions in the vicinity of methylated nucleotides have been implicated in mRNA and initiator tRNA binding (Gold et al., 1984). Nine of the 13 methyl groups in E. coli 16S RNA are located within 140 nucleotides from the 3′ end (Noller and Van Knippenberg, 1983), and five of these are present in the 3′ proximal hairpin loop (Fig. 23.1). This stem-loop structure is one of the most conserved regions in the RNA of small ribosomal subunits (Van Knippenberg etal., 1984). This must be a structure of utmost importance for ribosome function (at least in vivo), since not only is the RNA structure conserved but also the genetic information for enzyme systems necessary for posttranscriptional modification.

Keywords

Coat Protein Euglena Gracilis Small Ribosomal Subunit Translational Fidelity Terminal Hairpin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkins, J.F., Gesteland, R.F., Reid, B.R., Anderson, C.W. (1979). Normal tRNAs promote ribosomal frameshifting. Cell 18: 1119–1131.PubMedCrossRefGoogle Scholar
  2. Baan, R.A., Hilbers, C.W., van Charldorp, R., van Leerdam, E., van Knippenberg, P.H., Bosch, L. (1977). A high resolution proton magnetic resonance study of the secondary structure of the 3’ terminal 49 nucleotide fragment of 16 S rRNA from E. coli. Proc. Natl. Acad. Sci USA 74:1028–1031.PubMedCrossRefGoogle Scholar
  3. Beaud, G., Hayes, D.H. (1971a). Propriétés des ribosomes et du RNA synthétisés par Escherichia coli cultivé en présence d’éthionine. 1. Interactions entre les sousunités ribosomiques 30S et 50S synthétisés en présence d’éthionine. Eur. J. Bio- chem 19: 323–339.PubMedCrossRefGoogle Scholar
  4. Beaud, G., Hays, D.H. (1971b). Propriétés des ribosomes et du RNA synthétisés par Escherichia coli cultivé en présence d’éthionine. 2. Méthylation in vitro des ribosomes-éthionine. Eur. J. Biochem 20: 525–534.PubMedCrossRefGoogle Scholar
  5. Borek, E., Srinivasan, P.R. (1965). Alteration of the macromolecular structure of nucleic acids by transmethylation. In: Transmethylation and methionine biosynthesis, eds. Shapiro, S.K., Schlenk, F. The University of Chicago Press, pp. 115–137.Google Scholar
  6. Bowman, C.M., Dahlberg, J.E., Ikemura, T., Konisky, J., Nomura, M. (1971). Specific inactivation of 16S ribosomal RNA induced by colicin E3 in vivo. Proc. Natl. Acad. Sci. USA 68: 964–968.PubMedCrossRefGoogle Scholar
  7. Brow, D.A., Noller, H.F. (1983). Protection of ribosomal RNA from kethoxal in polyribosomes. Implication of specific sites in ribosome function. J. Mol. Biol 163: 27–46.PubMedCrossRefGoogle Scholar
  8. De Graaf, F.K., Niekus, H.G.D., Klootwijk, J. (1973). Inactivation of bacterial ribosomes in vivo and in vitro by cloacin DF13. FEBS Lett. 35: 161–165.PubMedCrossRefGoogle Scholar
  9. Gale, E.F., Cundliffe, E, Reynolds, P.E., Richmond, M.H., Waring, M.J. (1981). The molecular basis of antibiotic action, 2nd ed. John Wiley & Sons, pp. 402–547.Google Scholar
  10. Gallant, J., Foley, D. (1980). On the causes and prevention of mistranslation. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., et al. University Park Press, Baltimore, pp. 615–638.Google Scholar
  11. Gold, L., Stormo, G., Saunders, R. (1984). Escherichia coli translational initiation factor IF 3: a unique case of translational regulation. Proc. Natl. Acad. Sci. USA 81: 7061–7065.PubMedCrossRefGoogle Scholar
  12. Gornicki, P., Nurse, K., Hellmann, W., Boublik, M., Ofengand, J. (1984). High resolution localization of the tRNA anticodon interaction site on the Escherichia coli 30 S ribosomal subunit. J. Biol. Chem 259: 10493–10498.PubMedGoogle Scholar
  13. Hamada, M., Hashimoto, T., Takahashi, T., Yokoyama, S., Miyake, M., Takeuchi, T., Okami, Y., Umezawa, J. (1965). Antimicrobial activity of kasugamycin. J. Antibiot. Ser A 18 (2): 104–106.Google Scholar
  14. Heiser, T.L., Davies, J.E., Dahlberg, J.E. (1971). Change in methylation of 16S ribosomal RNA associated with mutation to kasugamycin resistance in Escherichia coli. Nat. New Biol 233: 12–14.Google Scholar
  15. Heiser, T.L., Davies, J.E., Dahlberg, J.E. (1973). Mechanism of kasugamycin resistance in Escherichia coli. Nat. New Biol 235: 6–9.Google Scholar
  16. Heus, H.A., Van Kimmenade, J.M.A., Van Knippenberg, P.H., Haasnoot, C.A.G., De Bruin, S.H., Hilbers, C.W. (1983 a). High-resolution proton magnetic resonance studies of the 3’ terminal colicin fragment of 16 S ribosomal RNA from Escherichia coli. Assignment of imino proton resonances by nuclear Overhauser effect experiments and the influence of adenine dimethylation on the hairpin conformation. J. Mol. Biol 170: 939–956.Google Scholar
  17. Heus, H.A., Van Kimmenade, J.M.A., Van Knippenberg, P.H., Hinz, H.J. (1983b). Calorimetric measurements of the destabilization of a ribosomal RNA hairpin by dimethylation of two adjacent adenosines. Nucl. Acids Res 11: 203–210.PubMedCrossRefGoogle Scholar
  18. Jänel, G., Michelsen, U., Nishimura, S., Kersten, H. (1984). Queuosine modificationStructural and Functional Aspects of the N6,iV6 Dimethyladenosines in tRNA and expression of the nitrate reductase in Escherichia coli. EMBO J. 3: 1603–1608.PubMedGoogle Scholar
  19. Kearns, D.R., Wong, Y.P. (1974). Investigation of the secondary structure of Escherichia coli 5S RNA by high-resolution nuclear magnetic resonance. J. Mol. Biol 87: 755–774.PubMedCrossRefGoogle Scholar
  20. Kersten, H. (1984). On the biological significance of modified nucleosides in tRNA. Prog. Nucl. Acid Res. Mol. Biol. 31: 59-114.Google Scholar
  21. Miller, J.H., Albertini, A.M. (1983). Effects of surrounding sequence on the suppression of nonsense codons. J. Mol. Biol 164: 59–71.PubMedCrossRefGoogle Scholar
  22. Miller, J.H., Coulondre, C., Farabaugh, P.J. (1978). Correlation of nonsense sites in the lac gene with specific codons in the nucleotide sequence. Nature 274: 770–775.PubMedCrossRefGoogle Scholar
  23. Newton, A. (1970). Isolation and characterization of frameshift mutations in the lac operon. J. Mol. Biol 49: 589–601.PubMedCrossRefGoogle Scholar
  24. Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem 53: 119–162.PubMedCrossRefGoogle Scholar
  25. Noller, H.F., Van Knippenberg, P.H. (1983). Structure and function of ribosomal RNA. In: Horizons in biochemistry and biophysics, vol. 7, ed. Kroon, A.M. John Wiley and Sons Ltd., pp. 71–99.Google Scholar
  26. Okuyama, A., Machiyama, N., Kinoshita, T., Tanaka, N. (1971). Inhibition by kasugamycin of initiation complex formation on 30 S ribosomes. Biochem. Biophys. Res. Commun 43: 196–199.PubMedCrossRefGoogle Scholar
  27. Olsthoorn, C.S.M., Haasnoot, C.A.G., Altona, C. (1980). Circular dichroism studies of 6-N-me thy la ted adenylyladenosine and adenylyluridine and their parent compounds. Eur. J. Biochem 106: 85–95.PubMedCrossRefGoogle Scholar
  28. Piepersberg, W., Noseda, V., Böck, A. (1979). Bacterial ribosomes with two ambiguity mutations: effects on translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis. Molec. Gen. Genet 171: 24–34.CrossRefGoogle Scholar
  29. Poldermans, B., Bakker, H., Van Knippenberg, P.H. (1980). Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3’ end of 16S ribosomal RNA of Escherichia coli. IV. The effect of the methylgroups on ribosomal subunit interaction. Nucl. Acids Res 8: 143–151.PubMedCrossRefGoogle Scholar
  30. Poldermans, B., Goosen, N., Van Knippenberg, P.H. (1979a). Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3’ end of 16 S ribosomal RNA of Escherichia coli. I. The effect of kasugamycin on initiation of protein biosynthesis. J. Biol. Chem 254: 9085–9089.PubMedGoogle Scholar
  31. Poldermans, B., Roza, L., Van Knippenberg, P.H. (1979b). Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3’ end of 16 S ribosomal RNA in Escherichia coli. III. Purification and properties of the methylating enzyme and methylase-30S interaction. J. Biol. Chem 254: 9094–9100.PubMedGoogle Scholar
  32. Poldermans, B., Van Buul, C.P.J.J., Van Knippenberg, P.H. (1979c). Studies on the function of two adjacent N6,N6-dimethyladenosines near the 3’ end of 16 S ribosomal RNA of Escherichia coli. II. The effects of the absence of the methyl- groups on initiation of protein biosynthesis. J. Biol. Chem 254: 9090–9094.PubMedGoogle Scholar
  33. Pölitz, S.M., Glitz, D.G. (1977). Ribosome structure: localization of N6,N6dimeth- yladenosine by electron microscopy of a ribosome-antibody complex. Proc. Natl. Acad. Sci. USA 74: 1468–1472.PubMedCrossRefGoogle Scholar
  34. Senior, B.W., Holland, I.B. (1971). Effect of colicin E3 upon the 30S ribosomal subunit of Escherichia coli. Proc. Natl. Acad. Sci. USA 68: 959–963.PubMedCrossRefGoogle Scholar
  35. Shulman, R.G., Hilbers, C.W., Kearns, D.R., Reid, B.R., Wong, Y.P. (1973). Ring current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. J. Mol. Biol 78: 57–69.PubMedCrossRefGoogle Scholar
  36. Sparling, P.F. (1970). Kasugamycin resistance: 30S ribosomal mutation with an unusual location on the Escherichia coli chromosome. Science 167: 56 - 58.PubMedCrossRefGoogle Scholar
  37. Tazawa, I., Kaike, T., Inoue, Y. (1980). Stacking properties of a highly hydrophobic dinucleotide sequence, N 6,N 6-dimethyladenylyl (3′→5′)N 6,N 6-dimethyladenosine occurring in 16-18-S ribosomal RNA. Eur. J. Biochem. 109:33–38.PubMedCrossRefGoogle Scholar
  38. Thammana, P., Cantor, C.R. (1978). Studies on ribosome structure and interactions near the m26Am26A sequence. Nucl. Acids Res. 5: 805–823.Google Scholar
  39. Thammana, P., Held, W.A. (1974). Methylation of 16S RNA during ribosome assembly in vitro. Nature 251: 682–686.PubMedCrossRefGoogle Scholar
  40. Umezawa, H., Okami, Y., Hashimoto, T., Suhara, Y., Hamada, M., Takeuchi, T. (1965). A new antibiotic, kasugamycin. J. Antibiot. Ser A. 18 (2): 101 - 103.Google Scholar
  41. Van Buul, C.P.J.J., Hamersma, M., Visser, W., Van Knippenberg, P.H. (1984a). Partial methylation of two adjacent adenosines in ribosomes from Euglena gracilis chloroplasts suggests evolutionary loss of an intermediate in the methyltransfer reaction. Nucl. Acids Res. 12: 9205–9208.Google Scholar
  42. Van Buul, C.P.J.J., Lawson, M.P., Visser, W., Van Knippenberg, P.H. (1984b). Increased translational fidelity caused by the antibiotic kasugamycin and ribo¬somal ambiguity in mutants harbouring the ksgA gene. FEBS Lett. 177: 119 - 124.PubMedCrossRefGoogle Scholar
  43. Van Buul, C.P.J.J., Van Knippenberg, P.H. (1985). Nucleotide sequence of the ksgA gene of Escherichia coli: comparison of the methyltransferases effecting dimethylation of adenosine in ribosomal RNA. GENE 38: 65 - 72.PubMedCrossRefGoogle Scholar
  44. Van Charldorp, R., Heus, H.A., Van Knippenberg, P.H., Joordens, J., de Bruin, S.H., Hilbers, C.W. (1981). Destabilization of secondary structure in 16S ribosomal RNA by dimethylation of two adjacent adenosines. Nucl. Acids Res. 9:4413–4422.PubMedCrossRefGoogle Scholar
  45. Van Charldorp, R., Verhoeven, J.J., Van Knippenberg, P.H., Haasnoot, C.A.G., Hilbers, C.W. (1982). A carbon-13 nuclear magnetic resonance study of the 3′ terminus of 16 S ribosomal RNA of Escherichia coli specifically labeled with carbon-13 in the methylgroups of the mfAmfA sequence. Nucl. Acids Res. 10: 4237-4245.Google Scholar
  46. Van Duin, J., Wijnands, R. (1981). The function of ribosomal protein S21 in protein synthesis. Eur. J. Biochem. 118:615–619.PubMedCrossRefGoogle Scholar
  47. Van Knippenberg, P.H., Heus, H.A. (1983). The conformation of a conserved stem-loop structure in ribosomal RNA. J . Biomolec. Struct. Dynam. 1:371–381.Google Scholar
  48. Van Knippenberg, P.H.,Van Kimmenade, J.M.A., Heus, H.A. (1984). Phylogeny of the conserved 3’ terminal structure of the RNA of small ribosomal subunits. Nucl. Acids Res. 12:2595–2604.PubMedCrossRefGoogle Scholar
  49. Wickstrom, E . (1983). Nuclease mapping of the secondary structure of the 49-nucle- otide y terminal cloacin fragment of Escherichia coli 16S RNA and its interactions with initiation factor 3. Nucl. Acids Res. 11:2035–2052.PubMedCrossRefGoogle Scholar
  50. Wickstrom, E., Heus, H.A., Haasnoot, C.A.G., Van Knippenberg, P.H. (in press). Circular dichroism and 500 MHz proton magnetic resonance studies of the interaction of Escherichia coli translational initiation factor 3 protein with the 16S ribosomal RNA 3′ cloacin fragment. BiochemistryGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1986

Authors and Affiliations

  • P. H. van Knippenberg

There are no affiliations available

Personalised recommendations