Skip to main content

Studies of the Structure of Eukaryotic (Mammalian) Ribosomes

  • Chapter
Structure, Function, and Genetics of Ribosomes

Part of the book series: Springer Series in Molecular Biology ((SSMOL))

Abstract

The grand imperative of research on ribosomes is to know the structure of the organelle so as to be able to provide a molecular account of its function in protein synthesis. Studies on the structure of ribosomes have concentrated the minds and employed the hands of a large number of investigators for more than two decades. Knowledge of prokaryotic (principally Escherichia coli) ribosomes is extensive (Wittmann, 1982, 1983; Noller, 1984; Nomura et al., 1984); that of eukaryotic ribosomes lags behind because the structure is more complicated and because of the handicaps imposed by the difficulty of applying genetic analysis and by the lack of a means for reconstituting ribosome subunits. Nonetheless, significant progress has been made in the past 5 years (Wool, 1979, 1980), especially as the result of the application of recombinant DNA technology. A good deal of the progress has been in the analysis of the structure of ribosomes from yeast, from Xenopus, and from Artemia. This research will be reviewed elsewhere in this volume. The emphasis here will be on mammalian ribosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoyama, K., Hidaka, S., Tanaka, T., Ishikawa, K. (1982). The nucleotide sequence of 5 S RNA from rat liver ribosomes. J. Biochem. 91: 363–367.

    PubMed  CAS  Google Scholar 

  • Bieker, J.J., Roeder, R.G. (1984). Physical properties and DNA-binding stoichiometry of a 5 S gene-specific transcription factor. J. Biol. Chem. 259: 6158–6164.

    PubMed  CAS  Google Scholar 

  • Blobel, G. (1971). Isolation of a 5 S RNA-protein complex from mammalian ribosomes. Proc. Natl. Acad. Sci. USA 68: 1881–1885.

    Article  CAS  Google Scholar 

  • Bogenhagen, DF., Sakonju, S., Brown, D.D. (1980). A control region in the center of the 5 S RNA gene directs specific initiation of transcription. II. The 3’ border of the region. Cell 19: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Cahn, F., Schachter, E.M., Rich, A. (1970). Polypeptide synthesis with ribonuclease-digested ribosomes. Biochem. Biophys. Acta 209: 512–520.

    PubMed  CAS  Google Scholar 

  • Chan, Y.L., Endo, Y., Wool, I.G. (1983a). The sequence of the nucleotides at the α-sarcin cleavage site in rat 28 S ribosomal ribonucleic acid. J. Biol. Chem. 258:12768–12770.

    Google Scholar 

  • Chan, Y.L., Gutell, R., Noller, H.F., Wool, I.G. (1984). The nucleotide sequence of a rat 18 S ribosomal ribonucleic acid gene and a proposal for the secondary structure of 18 S ribosomal ribonucleic acid. J. Biol. Chem. 259: 224–230.

    PubMed  CAS  Google Scholar 

  • Chan, Y.L., Olvera, J., Wool, I.G. (1983b). The structure of rat 28S ribosomal ribonucleic acid inferred from the sequence of nucleotides in a gene. Nucl. Acids Res. 11: 7819–7831.

    Article  PubMed  CAS  Google Scholar 

  • Clark, C.G., Tague, B.W, Ware, V.C, Gerbi, S.A. (1984). Xenopus laevis 28 S rRNA: a secondary structure model and its evolutionary and functional implications. Nucl. Acids Res. 12: 6197–6220.

    Article  PubMed  CAS  Google Scholar 

  • Connaughton, J.F., Rairkar, A., Lockard, R.E., Kumar, A. (1984). Primary struc¬ture of rabbit 18 S RNA determined by direct RNA sequence analysis. Nucl. Acids Res. 12: 4731–4745.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F. (1981). Similar amino acid sequences: chance or common ancestry? Science 214: 149–159.

    Article  PubMed  CAS  Google Scholar 

  • Doolittle, R.F., Woodbury, N.W., Jue, R.A. (1982). Ribosomal protein SI is the product of a series of contiguous duplications. Biosci. Rep. 2: 405–412.

    Article  PubMed  CAS  Google Scholar 

  • Dudov, K.P., Perry, R.P. (1984). The gene family encoding the mouse ribosomal protein L 32 contains a uniquely expressed intron containing gene and an unmutated processed gene. Cell 37: 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Endo, Y., Huber, P.W., Wool, I.G. (1983). The ribonuclease activity of the cyto- toxin a-sarcin. The characteristics of the enzymatic activity of α-sarcin with ribosomes and ribonucleic acids as substrates. J. Biol. Chem. 258: 2662–2667.

    PubMed  CAS  Google Scholar 

  • Endo, Y., Wool, I.G. (1982). The site of action of α-sarcin on eukaryotic ribosomes. The sequence at the α-sarcin site in 28 S ribosomal ribonucleic acid. J. Biol. Chem. 257: 9054–9060.

    PubMed  CAS  Google Scholar 

  • Engelke, D.R., Ng, S.Y., Shastry, B.S., Roeder, R.G. (1980). Specific interaction of a purified transcription factor with an internal control region of 5S RNA genes. Cell 19: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Puentes, C., Vazquez, D. (1977). Effects of some proteins that inactivate the eukaryotic ribosome. FEBS Lett . 78: 143–146.

    Article  PubMed  CAS  Google Scholar 

  • Galas, D.J., Schmitz, A. (1978). DNase footprinting: a simple method for the detection of protein-DNA binding specificity. Nucl Acids Res . 5: 3157–3170.

    Article  PubMed  CAS  Google Scholar 

  • Garrett, R.A., Douthwaite, S., Noller, H.G. (1981). Structure and role of 5S RNA- protein complexes in protein biosynthesis. Trends Biochem. Sci. 6: 137–139.

    Article  CAS  Google Scholar 

  • Georgiev, O.I., Nikolaev, N., Hadjiolov, A.A., Skryabin, K.G., Zakharyev, V.M., Bayev, A.A. (1981). The structure of the yeast ribosomal RNA gene. 4. Complete sequence of the 25 S rRNA gene from Saccaromyces cerevisiae. Nucl Acids Res . 9: 6953–6958.

    Article  PubMed  CAS  Google Scholar 

  • Ginsberg, A.M., King, B.O., Roeder, R.G. (1984). Xenopus 5S gene transcription factor, TF III A: characterization of a cDNA clone and measurement of RNA levels throughout development. Cell 39: 479–489.

    Article  PubMed  CAS  Google Scholar 

  • Glotz, C., Brimacombe, R. (1980). An experimentally-derived model for the secondary structure of the 16 S ribosomal RNA from Escherichia coli. Nucl. Acids Res. 8: 2377–2395.

    Article  PubMed  CAS  Google Scholar 

  • Hadjiolov, A.A., Georgiev, O.I., Nosikov, V.V., Yavachev, L.P. (1984). Primary and secondary structure of rat 28 S ribosomal RNA. Nucl. Acids Res. 12: 3677–3693.

    Article  PubMed  CAS  Google Scholar 

  • Hanas, J.S., Bogenhagen, D.F., Wu, C.W. (1983). Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene. Proc. Natl. Acad. Sci. USA 80: 2142–2145.

    Article  PubMed  CAS  Google Scholar 

  • Hassouna, N., Michot, B., Bachellerie, J.P. (1984). The complete nucleotide sequence of mouse 28 S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. Nucl. Acids Res. 12: 3563–3583.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, E., Lake, J.A. (In press). Ribosomal collapse triggered by a DNA oligonucleotide. Fed. Proc.

    Google Scholar 

  • Hobden, A.N., Cundliffe, E. (1978). The mode of action of alpha α-sarcin and a novel assay of the puromycin reaction. Biochem. J. 170: 57–61.

    PubMed  CAS  Google Scholar 

  • Hogan, J.J., Gutell, R.R., Noller, H.F. (1984). Probing the conformation of 26S rRNA in yeast 60S ribosomal subunits with ketoxal. Biochemistry 23: 3330–3335.

    Article  PubMed  CAS  Google Scholar 

  • Honda, B.M., Roeder, R.G. (1980). Association of a 5S gene transcription factor with 5S RNA and altered levels of the factor during cell differentiation. Cell 22: 119–126.

    Article  PubMed  CAS  Google Scholar 

  • Huber, P.W., Wool, I.G. (1984). Nuclease protection analysis of ribonucleoprotein complexes: use of the cytotoxic ribonucleasea α-sarcin to determine the binding sites for Escherichia coli ribosomal proteins L5, L18, and L25 on 5S rRNA. Proc. Natl. Acad. Sci. USA 81: 322–326.

    Article  PubMed  CAS  Google Scholar 

  • Huber, P.W., Wool, I.G. (1986). Identification of the binding site on 5S rRNA for the transcription factor III A: Proposed structure of a common binding site on 5S rRNA and on the gene. Proc. Natl. Acad. Sci. USA 83: 1593–1597.

    Article  PubMed  CAS  Google Scholar 

  • Huber, P.W., Wool, I.G. (1986). Identification of the binding site on 5S rRNA for the transcription factor III A: Proposed structure of a common binding site on 5S rRNA and on the gene. Proc. Natl. Acad. Sci. USA 83: 1593–1597.

    Article  PubMed  CAS  Google Scholar 

  • Kuwano, Y., Nakanishi, 0., Nabeshima, Y., Tanaka, T., Ogata, K. (1985). Molecular cloning and nucleotide sequence of DNA complementary to rat ribosomal protein S26 messenger RNA. J. Biochem. 97: 983–992.

    CAS  Google Scholar 

  • Lassar, A.B., Martin, P.L., Roeder, R.G. (1983). Transcription of class III genes: formation of preinitiation complexes. Science 222: 740–748.

    Article  PubMed  CAS  Google Scholar 

  • Lin, A., McNally, J., Wool, I.G. (1983). The primary structure of rat liver ribosomal protein L37. Homology with yeast and bacterial ribosomal proteins. J. Biol. Chem. 258: 10664–10668.

    PubMed  CAS  Google Scholar 

  • Lin, A., McNally, J., Wool, I.G. (1984). The primary structure of rat liver ribosomal protein L39. J. Biol. Chem. 259: 487–490.

    PubMed  CAS  Google Scholar 

  • Lin, A., Wittmann-Liebold, B., McNally, J., Wool, I.G. (1982). The primary structure of the acidic phosphoprotein P2 from rat liver 60S ribosomal subunits. J. Biol. Chem. 257: 9189–9197.

    PubMed  CAS  Google Scholar 

  • Matheson, A.T., Moller, W., Amons, R., Yaguchi, M. (1980). Comparative studies on the structure of ribosomal proteins, with emphasis on the alanine-rich, acidic ribosomal, “A” proteins. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., et al., University Park Press, Baltimore, pp. 297–332.

    Google Scholar 

  • Michot, B., Hassouna, N., Bachellerie, J.P. (1984). Secondary structure of mouse 28 S rRNA and general model for the folding of other large RNA in eukaryotes. Nucl. Acids Res. 12: 4259–4279.

    Article  PubMed  CAS  Google Scholar 

  • Nazar, R.N., Sitz, T.O., Busch, H. (1975). Structural analyses of mammalian ribosomal ribonucleic acid and its precursors. Nucleotide sequence of ribosomal 5.8 S ribonucleic acid. J. Biol. Chem. 250: 859120138597.

    Google Scholar 

  • Nelles, L., Fang, B.L., Volckaert, G., Vandenberghe, A., De Wachter, R. (1984). Nucleotide sequence of a crustacean 18 S ribosomal RNA gene and secondary structure of eukaryotic small subunit ribosomal RNAs. Nucl. Acids. Res. 12: 8749–8768.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F. (1984). Structure of ribosomal RNA. Ann. Rev. Biochem. 53: 119–162.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Kop, J., Wheaton, V., Brosius, J., Gutell, R.R., Kopylov, A.M., Dohme, F., Herr, W., Stahl, D.A., Gupta, R., Woese, C.R. (1981). Secondary structure model for 23 S ribosomal RNA. Nucl. Acids Res. 9: 6167–6189.

    Article  PubMed  CAS  Google Scholar 

  • Noller, H.F., Woese, C.R. (1981). Secondary structure of 16S ribosomal RNA. Science 212: 403–411.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, M., Gourse, R., Boughman, G. (1984). Regulation of the synthesis of ribosomes and ribosomal components. Ann. Rev. Biochem. 53: 75–117.

    Article  PubMed  CAS  Google Scholar 

  • Olson, B.H., Goerner, G.L. (1965). Alpha sarcin, a new tumor agent. I. Isolation, purification, chemical composition, and the identity of a new amino acid. Appl. Microbiol. 13: 314–321.

    PubMed  CAS  Google Scholar 

  • Otsuka, T., Nomiyama, H., Yoshida, H., Kukita, T., Kuhara, S., Sakaki, Y. (1983). Complete nucleotide sequence of the 26 S rRNA gene of Physarum polycephalum: its significance in gene evolution. Proc. Natl. Acad. Sci. USA 80: 3163–3167.

    Article  PubMed  CAS  Google Scholar 

  • Pelham, H.R.B., Brown, D.D. (1980). A specific transcription factor than can bind either the 5S rRNA gene or 5S RNA. Proc. Natl. Acad. Sci. USA 77: 4170–4174.

    Article  PubMed  CAS  Google Scholar 

  • Raynal, F., Michot, B., Bachellerie, J.P. (1984). Complete nucleotide sequence of mouse 18S rRNA gene: comparison with other available homologs. FEBS Lett . 167: 263–268.

    Article  PubMed  CAS  Google Scholar 

  • Sacco, G., Drickamer, K., Wool, I.G. (1983). The primary structure of the cytotoxin α-sarcin. J. Biol. Chem. 258: 5811–5818.

    PubMed  CAS  Google Scholar 

  • Sakonju, S., Bogenhagen, D.F., Brown, D.D. (1980). A control region in the center of the 5S RNA gene directs specific initiation of transcription. I, the 5’ border of the region. Cell 19: 13–25.

    Article  PubMed  CAS  Google Scholar 

  • Sakonju, S., Brown, D.D. (1982). Contact points between a positive transcription factor and the Xenopus 5S RNA gene. Cell 31: 395–405.

    Article  PubMed  CAS  Google Scholar 

  • Sakonju, S., Brown, D.D., Engelke, D., Ng, S.Y., Shastry, B.S, Roeder, R.G. (1981). The binding of a transcription factor to deletion mutants of a 5S ribosomal RNA gene. Cell 23: 665–669.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.G., Davies, J.E. (1977). Specific cleavage of ribosomal RNA caused by alpha sarcin. Nucl. Acids Res. 4: 1097–1110.

    Article  PubMed  CAS  Google Scholar 

  • Shastry, B.S., Ng, S.Y., Roeder, R.G. (1982). Multiple factors involved in the transcription of class III genes in Xenopus laevis. J. Biol. Chem. 257: 12979–12986.

    PubMed  CAS  Google Scholar 

  • Smith, D.R., Jackson, I.J., Brown, D.D. (1984). Domains of the positive transcription factor specific for the Xenopus 5S RNA gene. Cell 37: 645–652.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, T., Kurvano, Y., Isikawa, K., Ogata, K. (1985) The nucleotide sequence of cloned cDNA specific for rat ribosomal protein SI 1. J. Biol. Chem. 26: 6329–6333.

    Google Scholar 

  • Terao, K., Takahashi, Y., Ogata, K. (1975). Differences between the protein moieties of active subunits and EDTA-treated subunits of rat liver ribosomes with specific references to a 5S rRNA protein complex. Biochem. Biophys. Acta 402: 230–237.

    PubMed  CAS  Google Scholar 

  • Torczynski, R., Bollon, A.P., Fuke, M. (1983). The complete nucleotide sequence of the rat 18 S ribosomal RNA gene and comparison with the respective yeast and frog genes. Nucl. Acids Res. 11: 4879–4890.

    Article  PubMed  CAS  Google Scholar 

  • Veldman, G.M., Klootwijk, J., de Regt, V.C.H.F., Planta, R.J., Branlant, C., Krol A., Ebel, J.P. (1981). The primary and secondary structure of yeast 26S rRNA. Nucl. Acids Res. 9: 6935–6952.

    Google Scholar 

  • Walker, T.A., Endo, Y., Wheat, W.H., Wool, I.G., Pace, N.R. (1983). Location of 5.8 S rRNA contact sites in 28 S rRNA and the effect of a-sarcin on the association of 5.8S rRNA with 28S rRNA. J. Biol. Chem. 258: 333–338.

    PubMed  CAS  Google Scholar 

  • Ware, V.C., Tague, B.W., Clark, C.G., Gourse, R.L., Brand, R.C., Gerbi, S.A. (1983). Sequence analysis of 28 S ribosomal DNA from the amphibian Xenopus laevis. Nucl. Acids Res. 11: 7795–7817.

    Article  PubMed  CAS  Google Scholar 

  • Wiedmann, L.M., Perry, R.P. (1984). Characterization of the expressed gene and several processed pseudogenes for the mouse ribosomal protein L 30 gene family. Mol. Cell Biol. 4: 2518–2528.

    Google Scholar 

  • Wittmann, H.G. (1982). Components of bacterial ribosomes. Ann. Rev. Biochem 51: 155–183.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann, H.G. (1983). Architecture of prokaryotic ribosomes. Ann. Rev. Biochem. 52: 35–65.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann-Liebold, B. (1984). Appendix: primary structure of Escherichia coli ribosomal proteins. Adv. Prot. Chem. 36: 56–78.

    Google Scholar 

  • Woese, C.R., Gutell, R., Gupta, R., Noller, H.F. (1983). Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. Microbiol. Rev. 47: 621–669.

    PubMed  CAS  Google Scholar 

  • Wool, I.G. (1979). The structure and function of eukaryotic ribosomes. Ann. Rev. Biochem. 48: 719–754.

    Article  PubMed  CAS  Google Scholar 

  • Wool, I.G. (1980). The structure and function of eukaryotic ribosomes. In: Ribosomes. Structure, function and genetics, eds. Chambliss, G., et al. University Park Press, Baltimore, pp. 797–824.

    Google Scholar 

  • Wool, I.G. (1984). The mechanism of action of the cytotoxic nuclease a-sarcin and its use to analyze ribosome structure. Trends Biochem. Sci. 9: 14–17.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Wool, I.G. (1986). Studies of the Structure of Eukaryotic (Mammalian) Ribosomes. In: Hardesty, B., Kramer, G. (eds) Structure, Function, and Genetics of Ribosomes. Springer Series in Molecular Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-4884-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-4884-2_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-9346-0

  • Online ISBN: 978-1-4612-4884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics